Robert T Knight

Altered hierarchical auditory predictive processing after lesions to the orbitofrontal cortex

Abstract:

Orbitofrontal cortex (OFC) is classically linked to inhibitory control, emotion regulation, and reward processing. Recent perspectives propose that the OFC also generates predictions about perceptual events, actions, and their outcomes. We tested the role of the OFC in detecting violations of prediction at two levels of abstraction (i.e., hierarchical predictive processing) by studying the event-related potentials (ERPs) of patients with focal OFC lesions (n = 12) and healthy controls (n = 14) while they detected deviant sequences of tones in a local–global paradigm. The structural regularities of the tones were controlled at two hierarchical levels by rules defined at a local (i.e., between tones within sequences) and at a global (i.e., between sequences) level. In OFC patients, ERPs elicited by standard tones were unaffected at both local and global levels compared to controls. However, patients showed an attenuated mismatch negativity (MMN) and P3a to local prediction violation, as well as a diminished MMN followed by a delayed P3a to the combined local and global level prediction violation. The subsequent P3b component to conditions involving violations of prediction at the level of global rules was preserved in the OFC group. Comparable effects were absent in patients with lesions restricted to the lateral PFC, which lends a degree of anatomical specificity to the altered predictive processing resulting from OFC lesion. Overall, the altered magnitudes and time courses of MMN/P3a responses after lesions to the OFC indicate that the neural correlates of detection of auditory regularity violation are impacted at two hierarchical levels of rule abstraction.

Authors:

  • Olgerta Asko

  • Alejandro Omar Blenkmann

  • Sabine Liliana Leske

  • Maja Dyhre Foldal

  • Anais Llorens

  • Ingrid Funderud

  • Torstein R Meling

  • Robert T Knight

  • Tor Endestad

  • Anne-Kristin Solbakk

Date: 2024

DOI: https://doi.org/10.7554/eLife.86386

View PDF

Unexpected sound omissions are signaled in human posterior superior temporal gyrus: an intracranial study

Abstract:

Context modulates sensory neural activations enhancing perceptual and behavioral performance and reducing prediction errors. However, the mechanism of when and where these high-level expectations act on sensory processing is unclear. Here, we isolate the effect of expectation absent of any auditory evoked activity by assessing the response to omitted expected sounds. Electrocorticographic signals were recorded directly from subdural electrode grids placed over the superior temporal gyrus (STG). Subjects listened to a predictable sequence of syllables, with some infrequently omitted. We found high-frequency band activity (HFA, 70–170 Hz) in response to omissions, which overlapped with a posterior subset of auditory-active electrodes in STG. Heard syllables could be distinguishable reliably from STG, but not the identity of the omitted stimulus. Both omission- and target-detection responses were also observed in the prefrontal cortex. We propose that the posterior STG is central for implementing predictions in the auditory environment. HFA omission responses in this region appear to index mismatch-signaling or salience detection processes.

Authors:

  • Hohyun Cho

  • Yvonne M Fonken

  • Markus Adamek

  • Richard Jimenez

  • Jack J Lin

  • Gerwin Schalk

  • Robert T Knight

  • Peter Brunner

Date: 2023

DOI: https://doi.org/10.1093/cercor/bhad155

View PDF

Orbitofrontal cortex governs working memory for temporal order

abstract:

How do we think about time? Converging lesion and neuroimaging evidence indicates that orbitofrontal cortex (OFC) supports the encoding and retrieval of temporal context in long-term memory, which may contribute to confabulation in individuals with OFC damage. Here, we reveal that OFC damage diminishes working memory for temporal order, that is, the ability to disentangle the relative recency of events as they unfold. OFC lesions reduced working memory for temporal order but not spatial position, and individual deficits were commensurate with lesion size. Comparable effects were absent in patients with lesions restricted to lateral prefrontal cortex (PFC). Based on these findings, we propose that OFC supports understanding of the order of events. Well-documented behavioral changes in individuals with OFC damage may relate to impaired temporal-order understanding.

authors:

  • Elizabeth L Johnson

  • William K Chang

  • Callum D Dewar

  • Donna Sorensen

  • Jack J Lin

  • Anne-Kristin Solbakk

  • Tor Endestad

  • Pal G Larsson

  • Jugoslav Ivanovic

  • Torstein R Meling

  • Donatella Scabini

  • Robert T Knight

Date: 2022

DOI: https:// doi.org/10.1016/j.cub.2022.03.074.

View PDF

Event segmentation reveals working memory forgetting rate

abstract:

We encounter the world as a continuous flow and effortlessly segment sequences of events into episodes. This process of event segmentation engages working memory (WM) for tracking the flow of events and impacts subsequent memory accuracy. WM is limited in how much information (i.e., WM capacity) and for how long the information is retained (i.e., forgetting rate). In this study, across multiple tasks, we estimated participants' WM capacity and forgetting rate in a dynamic context and evaluated their relationship to event segmentation. A U-shaped relationship across tasks shows that individuals who segmented the movie more finely or coarsely than the average have a faster WM forgetting rate. A separate task assessing long-term memory retrieval revealed that the coarse-segmenters have better recognition of temporal order of events compared to the fine-segmenters. These findings show that event segmentation employs dissociable memory strategies and correlates with how long information is retained in WM

authors:

  • Anna Jafarpour

  • Elizabeth A Buffalo

  • Robert T Knight

  • Anne GE Collins

Date: 2022

DOI: https://doi.org/10.1016/ j.isci.2022.103902

View PDF

Mind-wandering: mechanistic insights from lesion, tDCS, and iEEG

abstract:

Cognitive neuroscience has witnessed a surge of interest in investigating the neural correlates of the mind when it drifts away from an ongoing task and the external environment. To that end, functional neuroimaging research has consistently implicated the default mode network (DMN) and frontoparietal control network (FPCN) in mind-wandering. Yet, it remains unknown which subregions within these networks are necessary and how they facilitate mind-wandering. In this review, we synthesize evidence from lesion, transcranial direct current stimulation (tDCS), and intracranial electroencephalogram (iEEG) studies demonstrating the causal relevance of brain regions, and providing insights into the neuronal mechanism underlying mind-wandering. We propose that the integration of complementary approaches is the optimal strategy to establish a comprehensive understanding of the neural basis of mind-wandering.

Authors:

  • Julia WY Kam

  • Matthias Mittner

  • Robert T Knight

Date: 2022

DOI:

View PDF

Single-trial modeling separates multiple overlapping prediction errors during reward processing in human EEG

Abstract:

Learning signals during reinforcement learning and cognitive control rely on valenced reward prediction errors (RPEs) and non-valenced salience prediction errors (PEs) driven by surprise magnitude. A core debate in reward learning focuses on whether valenced and non-valenced PEs can be isolated in the human electroencephalogram (EEG). We combine behavioral modeling and single-trial EEG regression to disentangle sequential PEs in an interval timing task dissociating outcome valence, magnitude, and probability. Multiple regression across temporal, spatial, and frequency dimensions characterized a spatio-tempo-spectral cascade from early valenced RPE value to non-valenced RPE magnitude, followed by outcome probability indexed by a late frontal positivity. Separating negative and positive outcomes revealed the valenced RPE value effect is an artifact of overlap between two non-valenced RPE magnitude responses: frontal theta feedback-related negativity on losses and posterior delta reward positivity on wins. These results reconcile longstanding debates on the sequence of components representing reward and salience PEs in the human EEG.

Authors:

  • Colin W Hoy

  • Sheila C Steiner

  • Robert T Knight

Date: 2021

DOI: https://doi.org/10.1038/s42003-021-02426-1

View PDF


Gender bias in academia: A lifetime problem that needs solutions

Summary:

Despite increased awareness of the lack of gender equity in academia and a growing number of initiatives to address issues of diversity, change is slow, and inequalities remain. A major source of inequity is gender bias, which has a substantial negative impact on the careers, work-life balance, and mental health of underrepresented groups in science. Here, we argue that gender bias is not a single problem but manifests as a collection of distinct issues that impact researchers’ lives. We disentangle these facets and propose concrete solutions that can be adopted by individuals, academic institutions, and society.

Authors:

  • Anaïs Llorens

  • Athina Tzovara

  • Ludovic Bellier

  • Ilina Bhaya-Grossman

  • Aurélie Bidet-Caulet

  • William K Chang

  • Zachariah R Cross

  • Rosa Dominguez-Faus

  • Adeen Flinker

  • Yvonne Fonken

  • Mark A Gorenstein

  • Chris Holdgraf

  • Colin W Hoy

  • Maria V Ivanova

  • Richard T Jimenez

  • Soyeon Jun

  • Julia WY Kam

  • Celeste Kidd

  • Enitan Marcelle

  • Deborah Marciano

  • Stephanie Martin

  • Nicholas E Myers

  • Karita Ojala

  • Anat Perry

  • Pedro Pinheiro-Chagas

  • Stephanie K Riès

  • Ignacio Saez

  • Ivan Skelin

  • Katarina Slama

  • Brooke Staveland

  • Danielle S Bassett

  • Elizabeth A Buffalo

  • Adrienne L Fairhall

  • Nancy J Kopell

  • Laura J Kray

  • Jack J Lin

  • Anna C Nobre

  • Dylan Riley

  • Anne-Kristin Solbakk

  • Joni D Wallis

  • Xiao-Jing Wang

  • Shlomit Yuval-Greenberg

  • Sabine Kastner

  • Robert T Knight

  • Nina F Dronkers

Date: 2021

DOI: https://doi.org/10.1016/j.neuron.2021.06.002

View PDF


Aperiodic sleep networks promote memory consolidation

Abstract:

Hierarchical synchronization of sleep oscillations establishes communication pathways to support memory reactivation, transfer, and consolidation. From an information-theoretical perspective, oscillations constitute highly structured network states that provide limited information-coding capacity. Recent findings indicate that sleep oscillations occur in transient bursts that are interleaved with aperiodic network states, which were previously considered to be random noise. We argue that aperiodic activity exhibits unique and variable spatiotemporal patterns, providing an ideal information-rich neurophysiological substrate for imprinting new mnemonic patterns onto existing circuits. We discuss novel avenues in conceptualizing and quantifying aperiodic network states during sleep to further understand their relevance and interplay with sleep oscillations in support of memory consolidation.

Authors:

  • Randolph F Helfrich

  • Janna D Lendner

  • Robert T Knight

Date: 2021

DOI: https://doi.org/10.1016/j.tics.2021.04.009

View PDF


The role of the anterior nuclei of the thalamus in human memory processing

Abstract:

Extensive neuroanatomical connectivity between the anterior thalamic nuclei (ATN) and hippocampus and neocortex renders them well-placed for a role in memory processing, and animal, lesion, and neuroimaging studies support such a notion. The deep location and small size of the ATN have precluded their real-time electrophysiological investigation during human memory processing. However, ATN electrophysiological recordings from patients receiving electrodes implanted for deep brain stimulation for pharmacoresistant focal epilepsy have enabled high temporal resolution study of ATN activity. Theta frequency synchronization of ATN and neocortical oscillations during successful memory encoding, enhanced phase alignment, and coupling between ATN local gamma frequency activity and frontal neocortical and ATN theta oscillations provide evidence of an active role for the ATN in memory encoding, potentially integrating information from widespread neocortical sources. Greater coupling of a broader gamma frequency range with theta oscillations at rest than during memory encoding provides additional support for the hypothesis that the ATN play a role in selecting local, task-relevant high frequency activity associated with particular features of a memory trace.

Authors:

  • Catherine M Sweeney-Reed

  • Lars Buentjen

  • Jürgen Voges

  • Friedhelm C Schmitt

  • Tino Zaehle

  • Julia WY Kam

  • Jörn Kaufmann

  • Hans-Jochen Heinze

  • Hermann Hinrichs

  • Robert T Knight

  • Michael D Rugg

Date: 2021

DOI: https://doi.org/10.1016/j.neubiorev.2021.02.046

View PDF


Prefrontal lesions disrupt oscillatory signatures of spatiotemporal integration in working memory

Abstract:

How does the human brain integrate spatial and temporal information into unified mnemonic representations? Building on classic theories of feature binding, we first define the oscillatory signatures of integrating ‘where’ and ‘when’ information in working memory (WM) and then investigate the role of prefrontal cortex (PFC) in spatiotemporal integration. Fourteen individuals with lateral PFC damage and 20 healthy controls completed a visuospatial WM task while electroencephalography (EEG) was recorded. On each trial, two shapes were presented sequentially in a top/bottom spatial orientation. We defined EEG signatures of spatiotemporal integration by comparing the maintenance of two possible where-when configurations: the first shape presented on top and the reverse. Frontal delta-theta (δθ; 2–7 Hz) activity, frontal-posterior δθ functional connectivity, lateral posterior event-related potentials, and mesial posterior alpha phase-to-gamma amplitude coupling dissociated the two configurations in controls. WM performance and frontal and mesial posterior signatures of spatiotemporal integration were diminished in PFC lesion patients, whereas lateral posterior signatures were intact. These findings reveal both PFC-dependent and independent substrates of spatiotemporal integration and link optimal performance to PFC.

Authors:

  • Mohsen Parto Dezfouli

  • Saeideh Davoudi

  • Robert T Knight

  • Mohammad Reza Daliri

  • Elizabeth L Johnson

Date: 2021

DOI: https://doi.org/10.1016/j.cortex.2021.01.016

View PDF


Bidirectional prefrontal-hippocampal dynamics organize information transfer during sleep in humans

Abstract:

How are memories transferred from short-term to long-term storage? Systems-level memory consolidation is thought to be dependent on the coordinated interplay of cortical slow waves, thalamo-cortical sleep spindles and hippocampal ripple oscillations. However, it is currently unclear how the selective interaction of these cardinal sleep oscillations is organized to support information reactivation and transfer. Here, using human intracranial recordings, we demonstrate that the prefrontal cortex plays a key role in organizing the ripple-mediated information transfer during non-rapid eye movement (NREM) sleep. We reveal a temporally precise form of coupling between prefrontal slow-wave and spindle oscillations, which actively dictates the hippocampal-neocortical dialogue and information transfer. Our results suggest a model of the human sleeping brain in which rapid bidirectional interactions, triggered by the prefrontal cortex, mediate hippocampal activation to optimally time subsequent information transfer to the neocortex during NREM sleep.

Authors:

  • Randolph F Helfrich

  • Janna D Lendner

  • Bryce A Mander

  • Heriberto Guillen

  • Michelle Paff

  • Lilit Mnatsakanyan

  • Sumeet Vadera

  • Matthew P Walker

  • Jack J Lin

  • Robert T Knight

Date: 2019

DOI: https://doi.org/10.1038/s41467-019-11444-x

View PDF


Direct evidence for prediction signals in frontal cortex independent of prediction error

ABSTRACT

Predictive coding (PC) has been suggested as one of the main mechanisms used by brains to interact with complex environments. PC theories posit top-down prediction signals, which are compared with actual outcomes, yielding in turn prediction error (PE) signals, which are used, bottom-up, to modify the ensuing predictions. However, disentangling prediction from PE signals has been challenging. Critically, while many studies found indirect evidence for PC in the form of PE signals, direct evidence for the prediction signal is mostly lacking. Here, we provide clear evidence, obtained from intracranial cortical recordings in human surgical patients, that the human lateral prefrontal cortex evinces prediction signals while anticipating an event. Patients listened to task-irrelevant sequences of repetitive tones including infrequent predictable or unpredictable pitch deviants. The broadband high-frequency amplitude (HFA) was decreased prior to the onset of expected relative to unexpected deviants in the frontal cortex only, and its amplitude was sensitive to the increasing likelihood of deviants following longer trains of standards in the unpredictable condition. Single-trial HFA predicted deviations and correlated with poststimulus response to deviations. These results provide direct evidence for frontal cortex prediction signals independent of PE signals.






AUTHORS

  • Stefan Dürschmid

  • Christoph Reichert

  • Hermann Hinrichs

  • Hans-Jochen Heinze

  • Heidi E Kirsch

  • Robert T Knight

  • Leon Y Deouell

Date: 2018

DOI: 10.1093/cercor/bhy331

View PDF


Lesions to the fronto-parietal network impact alpha-band phase synchrony and cognitive control

Abstract:

Long-range phase synchrony in the α-oscillation band (near 10 Hz) has been proposed to facilitate information integration across anatomically segregated regions. Which areas may top-down regulate such cross-regional integration is largely unknown. We previously found that the moment-to-moment strength of high-α band (10–12 Hz) phase synchrony co-varies with activity in a fronto-parietal (FP) network. This network is critical for adaptive cognitive control functions such as cognitive flexibility required during set-shifting. Using electroencephalography (EEG) in 23 patients with focal frontal lobe lesions (resected tumors), we tested the hypothesis that the FP network is necessary for modulation of high-α band phase synchrony. Global phase-synchrony was measured using an adaptation of the phase-locking value (PLV) in a sliding window procedure, which allowed for measurement of changes in EEG-based resting-state functional connectivity across time. As hypothesized, the temporal modulation (range and standard deviation) of high-α phase synchrony was reduced as a function of FP network lesion extent, mostly due to dorsolateral prefrontal cortex (dlPFC) lesions. Furthermore, patients with dlPFC lesions exhibited reduced cognitive flexibility as measured by the Trail-Making Test (set-shifting). Our findings provide evidence that the FP network is necessary for modulatory control of high-α band long-range phase synchrony, and linked to cognitive flexibility.



Authors:

  • Sepideh Sadaghiani

  • Pascasie L Dombert

  • Marianne Løvstad

  • Ingrid Funderud

  • Torstein R Meling

  • Tor Endestad

  • Robert T Knight

  • Anne-Kristin Solbakk

  • Mark D’Esposito

Date: 2018

DOI: 10.1093/cercor/bhy296

View PDF


Mirroring in the Human Brain: Deciphering the Spatial-Temporal Patterns of the Human Mirror Neuron System

ABSTRACT

Embodied theories of cognition emphasize the central role of sensorimotor transformations in the representation of others’ actions. Support for these theories is derived from the discovery of the mirror neuron system (MNS) in primates, from noninvasive techniques in humans, and from a limited number of intracranial studies. To understand the neural dynamics of the human MNS, more studies with precise spatial and temporal resolutions are essential. We used electrocorticography to define activation patterns in sensorimotor, parietal and/or frontal neuronal populations, during a viewing and grasping task. Our results show robust high gamma activation for both conditions in classic MNS sites. Furthermore, we provide novel evidence for 2 different populations of neurons: sites that were only active for viewing and grasping (“pure mirroring”) and sites that were also active between viewing and grasping, and perhaps serve a more general attentional role. Lastly, a subgroup of parietal electrodes showed earlier peaks than all other regions. These results highlight the complexity of spatial-temporal patterns within the MNS and provide a critical link between single-unit research in monkeys and noninvasive techniques in human.






AUTHORS

  • Anat Perry

  • Jennifer Stiso

  • Edward F Chang

  • Jack J Lin

  • Josef Parvizi

  • Robert T Knight

Date: 2017

DOI: 10.1093/cercor/bhx013

View PDF