Alejandro Omar Blenkmann

Anatomical registration of intracranial electrodes. Robust model-based localization and deformable smooth brain-shift compensation methods

Abstract:

Background: Intracranial electrodes are typically localized from post-implantation CT artifacts. Automatic algorithms localizing low signal-to-noise ratio artifacts and high-density electrode arrays are missing. Additionally, implantation of grids/strips introduces brain deformations, resulting in registration errors when fusing post- implantation CT and pre-implantation MR images. Brain-shift compensation methods project electrode coordinates to cortex, but either fail to produce smooth solutions or do not account for brain deformations. New methods: We first introduce GridFit, a model-based fitting approach that simultaneously localizes all electrodes’ CT artifacts in grids, strips, or depth arrays. Second, we present CEPA, a brain-shift compensation algorithm combining orthogonal-based projections, spring-mesh models, and spatial regularization constraints. Results: We tested GridFit on ~6000 simulated scenarios. The localization of CT artifacts showed robust performance under difficult scenarios, such as noise, overlaps, and high-density implants (<1 mm errors). Validation with data from 20 challenging patients showed 99% accurate localization of the electrodes (3160/3192). We tested CEPA brain-shift compensation with data from 15 patients. Projections accounted for simple mechanical deformation principles with <0.4 mm errors. The inter-electrode distances smoothly changed across neighbor electrodes, while changes in inter-electrode distances linearly increased with projection distance. Comparison with existing methods: GridFit succeeded in difficult scenarios that challenged available methods and outperformed visual localization by preserving the inter-electrode distance. CEPA registration errors were smaller than those obtained for well-established alternatives. Additionally, modeling resting-state high-frequency activity in five patients further supported CEPA.

Authors:

  • Alejandro Omar Blenkmann

  • Sabine Liliana Leske

  • Anaïs Llorens

  • Jack J. Lin

  • Edward F. Chang

  • Peter Brunner

  • Gerwin Schalk

  • Jugoslav Ivanovic

  • Pål Gunnar Larsson

  • Robert Thomas Knight

  • Tor Endestad

  • Anne-Kristin Solbakk

Date: 2024

DOI: https://doi.org/10.1016/j.jneumeth.2024.110056

View PDF

Altered hierarchical auditory predictive processing after lesions to the orbitofrontal cortex

Abstract:

Orbitofrontal cortex (OFC) is classically linked to inhibitory control, emotion regulation, and reward processing. Recent perspectives propose that the OFC also generates predictions about perceptual events, actions, and their outcomes. We tested the role of the OFC in detecting violations of prediction at two levels of abstraction (i.e., hierarchical predictive processing) by studying the event-related potentials (ERPs) of patients with focal OFC lesions (n = 12) and healthy controls (n = 14) while they detected deviant sequences of tones in a local–global paradigm. The structural regularities of the tones were controlled at two hierarchical levels by rules defined at a local (i.e., between tones within sequences) and at a global (i.e., between sequences) level. In OFC patients, ERPs elicited by standard tones were unaffected at both local and global levels compared to controls. However, patients showed an attenuated mismatch negativity (MMN) and P3a to local prediction violation, as well as a diminished MMN followed by a delayed P3a to the combined local and global level prediction violation. The subsequent P3b component to conditions involving violations of prediction at the level of global rules was preserved in the OFC group. Comparable effects were absent in patients with lesions restricted to the lateral PFC, which lends a degree of anatomical specificity to the altered predictive processing resulting from OFC lesion. Overall, the altered magnitudes and time courses of MMN/P3a responses after lesions to the OFC indicate that the neural correlates of detection of auditory regularity violation are impacted at two hierarchical levels of rule abstraction.

Authors:

  • Olgerta Asko

  • Alejandro Omar Blenkmann

  • Sabine Liliana Leske

  • Maja Dyhre Foldal

  • Anais Llorens

  • Ingrid Funderud

  • Torstein R Meling

  • Robert T Knight

  • Tor Endestad

  • Anne-Kristin Solbakk

Date: 2024

DOI: https://doi.org/10.7554/eLife.86386

View PDF