Julia WY Kam

Mind-wandering: mechanistic insights from lesion, tDCS, and iEEG

abstract:

Cognitive neuroscience has witnessed a surge of interest in investigating the neural correlates of the mind when it drifts away from an ongoing task and the external environment. To that end, functional neuroimaging research has consistently implicated the default mode network (DMN) and frontoparietal control network (FPCN) in mind-wandering. Yet, it remains unknown which subregions within these networks are necessary and how they facilitate mind-wandering. In this review, we synthesize evidence from lesion, transcranial direct current stimulation (tDCS), and intracranial electroencephalogram (iEEG) studies demonstrating the causal relevance of brain regions, and providing insights into the neuronal mechanism underlying mind-wandering. We propose that the integration of complementary approaches is the optimal strategy to establish a comprehensive understanding of the neural basis of mind-wandering.

Authors:

  • Julia WY Kam

  • Matthias Mittner

  • Robert T Knight

Date: 2022

DOI:

View PDF

Gender bias in academia: A lifetime problem that needs solutions

Summary:

Despite increased awareness of the lack of gender equity in academia and a growing number of initiatives to address issues of diversity, change is slow, and inequalities remain. A major source of inequity is gender bias, which has a substantial negative impact on the careers, work-life balance, and mental health of underrepresented groups in science. Here, we argue that gender bias is not a single problem but manifests as a collection of distinct issues that impact researchers’ lives. We disentangle these facets and propose concrete solutions that can be adopted by individuals, academic institutions, and society.

Authors:

  • Anaïs Llorens

  • Athina Tzovara

  • Ludovic Bellier

  • Ilina Bhaya-Grossman

  • Aurélie Bidet-Caulet

  • William K Chang

  • Zachariah R Cross

  • Rosa Dominguez-Faus

  • Adeen Flinker

  • Yvonne Fonken

  • Mark A Gorenstein

  • Chris Holdgraf

  • Colin W Hoy

  • Maria V Ivanova

  • Richard T Jimenez

  • Soyeon Jun

  • Julia WY Kam

  • Celeste Kidd

  • Enitan Marcelle

  • Deborah Marciano

  • Stephanie Martin

  • Nicholas E Myers

  • Karita Ojala

  • Anat Perry

  • Pedro Pinheiro-Chagas

  • Stephanie K Riès

  • Ignacio Saez

  • Ivan Skelin

  • Katarina Slama

  • Brooke Staveland

  • Danielle S Bassett

  • Elizabeth A Buffalo

  • Adrienne L Fairhall

  • Nancy J Kopell

  • Laura J Kray

  • Jack J Lin

  • Anna C Nobre

  • Dylan Riley

  • Anne-Kristin Solbakk

  • Joni D Wallis

  • Xiao-Jing Wang

  • Shlomit Yuval-Greenberg

  • Sabine Kastner

  • Robert T Knight

  • Nina F Dronkers

Date: 2021

DOI: https://doi.org/10.1016/j.neuron.2021.06.002

View PDF


The role of the anterior nuclei of the thalamus in human memory processing

Abstract:

Extensive neuroanatomical connectivity between the anterior thalamic nuclei (ATN) and hippocampus and neocortex renders them well-placed for a role in memory processing, and animal, lesion, and neuroimaging studies support such a notion. The deep location and small size of the ATN have precluded their real-time electrophysiological investigation during human memory processing. However, ATN electrophysiological recordings from patients receiving electrodes implanted for deep brain stimulation for pharmacoresistant focal epilepsy have enabled high temporal resolution study of ATN activity. Theta frequency synchronization of ATN and neocortical oscillations during successful memory encoding, enhanced phase alignment, and coupling between ATN local gamma frequency activity and frontal neocortical and ATN theta oscillations provide evidence of an active role for the ATN in memory encoding, potentially integrating information from widespread neocortical sources. Greater coupling of a broader gamma frequency range with theta oscillations at rest than during memory encoding provides additional support for the hypothesis that the ATN play a role in selecting local, task-relevant high frequency activity associated with particular features of a memory trace.

Authors:

  • Catherine M Sweeney-Reed

  • Lars Buentjen

  • Jürgen Voges

  • Friedhelm C Schmitt

  • Tino Zaehle

  • Julia WY Kam

  • Jörn Kaufmann

  • Hans-Jochen Heinze

  • Hermann Hinrichs

  • Robert T Knight

  • Michael D Rugg

Date: 2021

DOI: https://doi.org/10.1016/j.neubiorev.2021.02.046

View PDF


Distinct electrophysiological signatures of task-unrelated and dynamic thoughts

Abstract:

Humans spend much of their lives engaging with their internal train of thoughts. Traditionally, research focused on whether or not these thoughts are related to ongoing tasks, and has identified reliable and distinct behavioral and neural correlates of task-unrelated and task-related thought. A recent theoretical framework highlighted a different aspect of thinking—how it dynamically moves between topics. However, the neural correlates of such thought dynamics are unknown. The current study aimed to determine the electrophysiological signatures of these dynamics by recording electroencephalogram (EEG) while participants performed an attention task and periodically answered thought-sampling questions about whether their thoughts were 1) task-unrelated, 2) freely moving, 3) deliberately constrained, and 4) automatically constrained. We examined three EEG measures across different time windows as a function of each thought type: stimulus-evoked P3 event-related potentials and non–stimulus-evoked alpha power and variability. Parietal P3 was larger for task-related relative to task-unrelated thoughts, whereas frontal P3 was increased for deliberately constrained compared with unconstrained thoughts. Frontal electrodes showed enhanced alpha power for freely moving thoughts relative to non-freely moving thoughts. Alpha-power variability was increased for task-unrelated, freely moving, and unconstrained thoughts. Our findings indicate distinct electrophysiological patterns associated with task-unrelated and dynamic thoughts, suggesting these neural measures capture the heterogeneity of our ongoing thoughts.

Authors:

  • Julia WY Kam

  • Zachary C Irving

  • Caitlin Mills

  • Shawn Patel

  • Alison Gopnik

  • Robert T Knight

Date: 2021

DOI: https://doi.org/10.1073/pnas.2011796118

View PDF


Top–Down Attentional Modulation in Human Frontal Cortex: Differential Engagement during External and Internal Attention

Abstract:

Decades of electrophysiological research on top–down control converge on the role of the lateral frontal cortex in facilitating attention to behaviorally relevant external inputs. However, the involvement of frontal cortex in the top–down control of attention directed to the external versus internal environment remains poorly understood. To address this, we recorded intracranial electrocorticography while subjects directed their attention externally to tones and responded to infrequent target tones, or internally to their own thoughts while ignoring the tones. Our analyses focused on frontal and temporal cortices. We first computed the target effect, as indexed by the difference in high frequency activity (70–150 Hz) between target and standard tones. Importantly, we then compared the target effect between external and internal attention, reflecting a top–down attentional effect elicited by task demands, in each region of interest. Both frontal and temporal cortices showed target effects during external and internal attention, suggesting this effect is present irrespective of attention states. However, only the frontal cortex showed an enhanced target effect during external relative to internal attention. These findings provide electrophysiological evidence for top–down attentional modulation in the lateral frontal cortex, revealing preferential engagement with external attention.

Authors:

  • Julia WY Kam

  • Randolph F Helfrich

  • Anne-Kristin Solbakk

  • Tor Endestad

  • Pål G Larsson

  • Jack J Lin

  • Robert T Knight

Date: 2020

DOI: https://doi.org/10.1093/cercor/bhaa262

View PDF


Insights into human cognition from intracranial EEG: A review of audition, memory, internal cognition, and causality

Abstract:

By recording neural activity directly from the human brain, researchers gain unprecedented insight into how neurocognitive processes unfold in real time. We first briefly discuss how intracranial electroencephalography (iEEG) recordings, performed for clinical practice, are used to study human cognition with the spatiotemporal and single-trial precision traditionally limited to non-human animal research. We then delineate how studies using iEEG have informed our understanding of issues fundamental to human cognition: auditory prediction, working and episodic memory, and internal cognition. We also discuss the potential of iEEG to infer causality through the manipulation or ‘engineering’ of neurocognitive processes via spatiotemporally precise electrical stimulation. We close by highlighting limitations of iEEG, potential of burgeoning techniques to further increase spatiotemporal precision, and implications for future research using intracranial approaches to understand, restore, and enhance human cognition.

Authors:

  • Elizabeth Johnson

  • Julia WY Kam

  • Athina Tzovara

  • Robert T Knight

Date: 2020

DOI: https://dx.doi.org/10.1088%2F1741-2552%2Fabb7a5

View PDF


Comparison between a wireless dry electrode EEG system with a conventional wired wet electrode EEG system for clinical applications

Abstract:

Dry electrode electroencephalogram (EEG) recording combined with wireless data transmission offers an alternative tool to conventional wet electrode EEG systems. However, the question remains whether the signal quality of dry electrode recordings is comparable to wet electrode recordings in the clinical context. We recorded the resting state EEG (rsEEG), the visual evoked potentials (VEP) and the visual P300 (P3) from 16 healthy subjects (age range: 26–79 years) and 16 neurological patients who reported subjective memory impairment (age range: 50–83 years). Each subject took part in two recordings on different days, one with 19 dry electrodes and another with 19 wet electrodes. They reported their preferred EEG system. Comparisons of the rsEEG recordings were conducted qualitatively by independent visual evaluation by two neurologists blinded to the EEG system used and quantitatively by spectral analysis of the rsEEG. The P100 visual evoked potential (VEP) and P3 event-related potential (ERP) were compared in terms of latency, amplitude and pre-stimulus noise. The majority of subjects preferred the dry electrode headset. Both neurologists reported that all rsEEG traces were comparable between the wet and dry electrode headsets. Absolute Alpha and Beta power during rest did not statistically differ between the two EEG systems (p > 0.05 in all cases). However, Theta and Delta power was slightly higher with the dry electrodes (p = 0.0004 for Theta and p < 0.0001 for Delta). For ERPs, the mean latencies and amplitudes of the P100 VEP and P3 ERP showed comparable values (p > 0.10 in all cases) with a similar spatial distribution for both wet and dry electrode systems. These results suggest that the signal quality, ease of set-up and portability of the dry electrode EEG headset used in our study comply with the needs of clinical applications.

Authors:

  • Hermann Hinrichs

  • Michael Scholz

  • Anne Katrin Baum

  • Julia WY Kam

  • Robert T Knight

  • Hans-Jochen Heinze

Date: 2020

DOI: https://doi.org/10.1038/s41598-020-62154-0

View PDF


Default network and frontoparietal control network theta connectivity supports internal attention

Abstract:

Attending to our inner world is a fundamental cognitive phenomenon, yet its neural underpinnings remain largely unknown. Neuroimaging evidence implicates the default network (DN) and frontoparietal control network (FPCN); however, the electrophysiological basis for the interaction between these networks is unclear. Here we recorded intracranial electroencephalogram from DN and FPCN electrodes implanted in individuals undergoing presurgical monitoring for refractory epilepsy. Subjects performed an attention task during which they attended to tones (that is, externally directed attention) or ignored the tones and thought about whatever came to mind (that is, internally directed attention). Given the emerging role of theta band connectivity in attentional processes, we examined the theta power correlation between DN and two subsystems of the FPCN as a function of attention states. We found increased connectivity between DN and FPCNA during internally directed attention compared to externally directed attention, which positively correlated with attention ratings. There was no statistically significant difference between attention states in the connectivity between DN and FPCNB. Our results indicate that enhanced theta band connectivity between the DN and FPCNA is a core electrophysiological mechanism that underlies internally directed attention.

Authors:

  • Julia WY Kam

  • Jack J Lin

  • Anne-Kristin Solbakk

  • Tor Endestad

  • Pål G Larsson

  • Robert T Knight

Date: 2019

DOI: https://doi.org/10.1038/s41562-019-0717-0

View PDF


A differential role for human hippocampus in novelty and contextual processing: Implications for P300

Abstract:

The role of the hippocampus in P300 has long been debated. Here, we present a theoretical framework that elucidates hippocampal contributions to scalp P300 based on intracranial and lesion research combined with emerging evidence on the role of the hippocampus in rapid statistical learning, memory, and novelty processing. The P300 has been divided in two subcomponents: a fronto‐central P3a related to novelty and distractor processing, and a parietal P3b related to target detection. Interest in a role for hippocampus in scalp P300 was sparked by P3‐like ERPs measured intracranially in human hippocampus. Subsequent medial temporal lobe lesion studies show intact scalp P3b, indicating that the hippocampus is not critical for P3b. This contrasts with the scalp P3a, which was significantly diminished in human patients with lesions in the posterior hippocampus. This suggests a differential role for hippocampus in P3a and P3b. Our framework purports that the hippocampus plays a central role in distractor processing that leads to P3a generation in cortical regions. We also propose that the hippocampus is involved at the end of the cognitive episode for both P3a and P3b implementing contextual updating. P3‐like ERPs measured in hippocampus may reflect input signals from cortical regions implementing updates based on the outcome of cognitive processes underlying scalp P3, enabling a model update of the environment facilitated by the hippocampus. Overall, this framework proposes an active role for the hippocampus in novelty processing leading up to P3a generation, followed by contextual updating of the outcome of both scalp P3a and P3b.

Authors:

  • Yvonne M Fonken

  • Julia WY Kam

  • Robert T Knight

Date: 2019

DOI: https://doi.org/10.1111/psyp.13400

View PDF