Neuron

Gender bias in academia: A lifetime problem that needs solutions

Summary:

Despite increased awareness of the lack of gender equity in academia and a growing number of initiatives to address issues of diversity, change is slow, and inequalities remain. A major source of inequity is gender bias, which has a substantial negative impact on the careers, work-life balance, and mental health of underrepresented groups in science. Here, we argue that gender bias is not a single problem but manifests as a collection of distinct issues that impact researchers’ lives. We disentangle these facets and propose concrete solutions that can be adopted by individuals, academic institutions, and society.

Authors:

  • Anaïs Llorens

  • Athina Tzovara

  • Ludovic Bellier

  • Ilina Bhaya-Grossman

  • Aurélie Bidet-Caulet

  • William K Chang

  • Zachariah R Cross

  • Rosa Dominguez-Faus

  • Adeen Flinker

  • Yvonne Fonken

  • Mark A Gorenstein

  • Chris Holdgraf

  • Colin W Hoy

  • Maria V Ivanova

  • Richard T Jimenez

  • Soyeon Jun

  • Julia WY Kam

  • Celeste Kidd

  • Enitan Marcelle

  • Deborah Marciano

  • Stephanie Martin

  • Nicholas E Myers

  • Karita Ojala

  • Anat Perry

  • Pedro Pinheiro-Chagas

  • Stephanie K Riès

  • Ignacio Saez

  • Ivan Skelin

  • Katarina Slama

  • Brooke Staveland

  • Danielle S Bassett

  • Elizabeth A Buffalo

  • Adrienne L Fairhall

  • Nancy J Kopell

  • Laura J Kray

  • Jack J Lin

  • Anna C Nobre

  • Dylan Riley

  • Anne-Kristin Solbakk

  • Joni D Wallis

  • Xiao-Jing Wang

  • Shlomit Yuval-Greenberg

  • Sabine Kastner

  • Robert T Knight

  • Nina F Dronkers

Date: 2021

DOI: https://doi.org/10.1016/j.neuron.2021.06.002

View PDF


Neural mechanisms of sustained attention are rhythmic

ABSTRACT

Classic models of attention suggest that sustained neural firing constitutes a neural correlate of sustained attention. However, recent evidence indicates that behavioral performance fluctuates over time, exhibiting temporal dynamics that closely resemble the spectral features of ongoing, oscillatory brain activity. Therefore, it has been proposed that periodic neuronal excitability fluctuations might shape attentional allocation and overt behavior. However, empirical evidence to support this notion is sparse. Here, we address this issue by examining data from large-scale subdural recordings, using two different attention tasks that track perceptual ability at high temporal resolution. Our results reveal that perceptual outcome varies as a function of the theta phase even in states of sustained spatial attention. These effects were robust at the single-subject level, suggesting that rhythmic perceptual sampling is an inherent property of the frontoparietal attention network. Collectively, these findings support the notion that the functional architecture of top-down attention is intrinsically rhythmic.





AUTHORS

  • Randolph F. Helfrich

  • Ian C. Fiebelkorn

  • Sara M. Szczepanski

  • Jack J. Lin

  • Josef Parvizi

  • Robert T. Knight

  • Sabine Kastner

Date: 2018

DOI: 10.1016/j.neuron.2018.07.032

View PDF


Multiplexing of Theta and Alpha Rhythms in the Amygdala-Hippocampal Circuit Supports Pattern Separation of Emotional Information

ABSTRACT

How do we remember emotional events? While emotion often leads to vivid recollection, the precision of emotional memories can be degraded, especially when discriminating among overlapping experiences in memory (i.e. pattern separation). Communication between the amygdala and the hippocampus has been proposed to support emotional memory but the exact neural mechanisms are not well understood. Here, we used intracranial depth electrode recordings in pre-surgical epilepsy patients to show that successful pattern separation of emotional stimuli is associated with theta band (3-7 Hz)-coordinated bidirectional interactions between the amygdala and the hippocampus. In contrast, we show that overgeneralization is associated with alpha band (7-13 Hz)-coordinated unidirectional influence from the amygdala to the hippocampus. These findings imply that alpha band synchrony may trigger overgeneralization of similar emotional events via amygdala-hippocampal directional coupling, which suggests a target for the treatment of psychiatric conditions such as post-traumatic stress disorder, where aversive memories are often overgeneralized.






AUTHORS

  • Jie Zheng

  • Rebecca F. Stevenson

  • Bryce A. Mander

  • Lilit Mnatsakanyan

  • Frank P. K. Hsu

  • Sumeet Vadera

  • Robert T. Knight

  • Michael A. Yassa

  • Jack J. Lin

Date: 2018

View PDF


Old brains come uncoupled in sleep: slow wave-spindle synchrony, brain atrophy, and forgetting

ABSTRACT

The coupled interaction between slow-wave oscillations and sleep spindles during non-rapid-eye-movement (NREM) sleep has been proposed to support memory consolidation. However, little evidence in humans supports this theory. Moreover, whether such dynamic coupling is impaired as a consequence of brain aging in later life, contributing to cognitive and memory decline, is unknown. Combining electroencephalography (EEG), structural MRI, and sleep-dependent memory assessment, we addressed these questions in cognitively normal young and older adults. Directional cross-frequency coupling analyses demonstrated that the slow wave governs a precise temporal coordination of sleep spindles, the quality of which predicts overnight memory retention. Moreover, selective atrophy within the medial frontal cortex in older adults predicted a temporal dispersion of this slow wave-spindle coupling, impairing overnight memory consolidation and leading to forgetting. Prefrontal-dependent deficits in the spatiotemporal coordination of NREM sleep oscillations therefore represent one pathway explaining age-related memory decline.





AUTHORS

  • Randolph F. Helfrich

  • Bryce A. Mander

  • William J. Jagust

  • Robert T. Knight

  • Matthew P. Walker

Date: 2018

DOI: 10.1016/j.neuron.2017.11.020

View PDF


Bringing Kids into the Scientific Review Process

ABSTRACT

Frontiers for Young Minds puts kids in charge of scientific publications by having them control the review process. This provides kids the ability to shape the way science is taught and to better understand the scientific method.



AUTHORS

  • Robert T. Knight

  • Sabine Kastner

Date: 2017

DOI: http://dx.doi.org/10.1016/j.neuron.2016.12.002

View PDF


A Cool Approach to Probing Speech Cortex

ABSTRACT

In this issue of Neuron, Long et al. (2016) employ a novel technique of intraoperative cortical cooling in humans during speech production. They demonstrate that cooling Broca’s area interferes with speech timing but not speech quality.




AUTHORS

  • Adeen Flinker

  • Robert T. Knight

Date: 2016

DOI: 10.1016/j.neuron.2016.02.039

View PDF