Anna Jafarpour

Multiple memory systems for efficient temporal order memory

Abstract:

We report distinct contributions of multiple memory systems to the retrieval of the temporal order of events. The neural dynamics related to the retrieval of movie scenes revealed that recalling the temporal order of close events elevates hippocampal theta power, like that observed for recalling close spatial relationships. In contrast, recalling far events increases beta power in the orbitofrontal cortex, reflecting recall based on the overall movie structure.

Authors:

  • Anna Jafarpour

  • Jack J. Lin

  • Robert T. Knight

  • Elizabeth A. Buffalo

Date: 2023

DOI: https://doi.org/10.1002/hipo.23550

View PDF

Event segmentation reveals working memory forgetting rate

abstract:

We encounter the world as a continuous flow and effortlessly segment sequences of events into episodes. This process of event segmentation engages working memory (WM) for tracking the flow of events and impacts subsequent memory accuracy. WM is limited in how much information (i.e., WM capacity) and for how long the information is retained (i.e., forgetting rate). In this study, across multiple tasks, we estimated participants' WM capacity and forgetting rate in a dynamic context and evaluated their relationship to event segmentation. A U-shaped relationship across tasks shows that individuals who segmented the movie more finely or coarsely than the average have a faster WM forgetting rate. A separate task assessing long-term memory retrieval revealed that the coarse-segmenters have better recognition of temporal order of events compared to the fine-segmenters. These findings show that event segmentation employs dissociable memory strategies and correlates with how long information is retained in WM

authors:

  • Anna Jafarpour

  • Elizabeth A Buffalo

  • Robert T Knight

  • Anne GE Collins

Date: 2022

DOI: https://doi.org/10.1016/ j.isci.2022.103902

View PDF

Event segmentation reveals working memory forgetting rate

Abstract:

We encounter the world as a continuous flow and effortlessly segment sequences of events into episodes. This process of event segmentation engages working memory (WM) for tracking the flow of events and impacts subsequent memory accuracy. WM is limited in how much information (i.e., WM capacity) and for how long the information is retained (i.e., forgetting rate). In this study, across multiple tasks, we estimated participants’ WM capacity and forgetting rate in a dynamic context and evaluated their relationship to event segmentation. A Ushaped relationship across tasks shows that individuals who segmented the movie more finely or coarsely than the average have a faster WM forgetting rate. A separate task assessing long-term memory retrieval revealed that the coarse-segmenters have better recognition of temporal order of events compared to the fine-segmenters. These findings show that event segmentation employs dissociable memory strategies and correlates with how long information is retained in WM

Authors:

  • Anna Jafarpour

  • Elizabeth A. Buffalo

  • Robert T. Knight

  • Anne G.E. Collins

Date: 2022

DOI: https://doi.org/10.1016/j.isci.2022.103902

View PDF

Medial orbitofrontal cortex, dorsolateral prefrontal cortex, and hippocampus differentially represent the event saliency

Abstract:

Two primary functions attributed to the hippocampus and prefrontal cortex (PFC) network are retaining the temporal and spatial associations of events and detecting deviant events. It is unclear, however, how these two functions converge into one mechanism. Here, we tested whether increased activity with perceiving salient events is a deviant detection signal or contains information about the event associations by reflecting the magnitude of deviance (i.e., event saliency). We also tested how the deviant detection signal is affected by the degree of anticipation. We studied regional neural activity when people watched a movie that had varying saliency of a novel or an anticipated flow of salient events. Using intracranial electroencephalography from 10 patients, we observed that high-frequency activity (50–150 Hz) in the hippocampus, dorsolateral PFC, and medial OFC tracked event saliency. We also observed that medial OFC activity was stronger when the salient events were anticipated than when they were novel. These results suggest that dorsolateral PFC and medial OFC, as well as the hippocampus, signify the saliency magnitude of events, reflecting the hierarchical structure of event associations.

Authors:

  • Anna Jafarpour

  • Sandon Griffin

  • Jack J Lin

  • Robert T Knight

Date: 2019

DOI: https://doi.org/10.1162/jocn_a_01392

View PDF


Working memory replay prioritizes weakly attended events

ABSTRACT

One view of working memory posits that maintaining a series of events requires their sequential and equal mnemonic replay. Another view is that the content of working memory maintenance is prioritized by attention. We decoded the dynamics for retaining a sequence of items using magnetoencephalography, wherein participants encoded sequences of three stimuli depicting a face, a manufactured object, or a natural item and maintained them in working memory for 5000 ms. Memory for sequence position and stimulus details were probed at the end of the maintenance period. Decoding of brain activity revealed that one of the three stimuli dominated maintenance independent of its sequence position or category; and memory was enhanced for the selectively replayed stimulus. Analysis of event-related responses during the encoding of the sequence showed that the selectively replayed stimuli were determined by the degree of attention at encoding. The selectively replayed stimuli had the weakest initial encoding indexed by weaker visual attention signals at encoding. These findings do not rule out sequential mnemonic replay but reveal that attention influences the content of working memory maintenance by prioritizing replay of weakly encoded events. We propose that the prioritization of weakly encoded stimuli protects them from interference during the maintenance period, whereas the more strongly encoded stimuli can be retrieved from long-term memory at the end of the delay period.

AUTHORS

  • Anna Jafarpour

  • Will D. Penny

  • Gareth Barnes

  • Robert T. Knight

  • Emrah Duzel

Date: 2017

DOI: http://dx.doi.org/10.1523/ENEURO.0171-17.2017

View PDF


Human hippocampal pre-activation predicts behavior

ABSTRACT

The response to an upcoming salient event is accelerated when the event is expected given the preceding events – i.e. a temporal context effect. For example, naming a picture following a strongly constraining temporal context is faster than naming a picture after a weakly constraining temporal context. We used sentences as naturalistic stimuli to manipulate expectations on upcoming pictures without prior training. Here, using intracranial recordings from the human hippocampus we found more power in the high-frequency band prior to high-expected pictures than weakly expected ones. We applied pattern similarity analysis on the temporal pattern of hippocampal high-frequency band activity in single hippocampal contacts. We found that greater similarity in the pattern of hippocampal field potentials between pre-picture interval and expected picture interval in the high-frequency band predicted picture-naming latencies. Additional pattern similarity analysis indicated that the hippocampal representations follow a semantic map. The results suggest that hippocampal pre- activation of expected stimuli is a facilitating mechanism underlying the powerful contextual behavioral effect.

AUTHORS

  • Robert T. Knight

  • Anna Jafarpour

  • Vitoria Piai

  • Jack J. Lin

Date: 2017

DOI: 10.1038/s41598-017-06477-5

View PDF