2021

Investigating the Link Between Linguistic and Non-Linguistic Cognitive Control in Bilinguals Using Laplacian-Transformed Event Related Potentials

Abstract:

Bilinguals’ need to suppress the activation of their other language while speaking has been proposed to result in enhanced cognitive control abilities outside of language. Several studies therefore suggest shared cognitive control processes across linguistic and non-linguistic tasks. Here we investigate this potential overlap using scalp electroencephalographic recordings and the Laplacian transformation, providing an estimation of the current source density and enabling the separation of EEG components in space. Fourteen Spanish-English bilinguals performed a picture-word matching task contrasting incongruent trials using cross-linguistic false cognates (e.g., a picture – foot, overlaid with distractor text: the English word PIE, i.e., the false cognate for the Spanish pie meaning “foot”) with congruent trials (matching English picture names and words, i.e., a picture – foot, with overlaid text: the English word FOOT), and an unrelated control condition. In addition, participants performed an arrow-version of the Eriksen flanker task. Worse behavioral performance was observed in incongruent compared to congruent trials in both tasks. In the non-linguistic task, we replicated the previously observed congruency effect on a medial-frontal event-related potential (ERP) peaking around 50 ms before electromyography (EMG) onset. A similar ERP was present in the linguistic task, was sensitive to congruency, and peaked earlier, around 150 ms before EMG onset. In addition, another component was found in the linguistic task at a left lateralized anterior frontal site peaking around 200 ms before EMG onset, but was absent in the non-linguistic task. Our results suggest a partial overlap between linguistic and non-linguistic cognitive control processes and that linguistic conflict resolution may engage additional left anterior frontal control processes.

Authors:

  • Martha Mendoza

  • Henrike K. Blumenfeld

  • Robert T. Knight

  • Stephanie K. Ries

Date: 2021

DOI: https://doi.org/10.1162/nol_a_00056

View PDF

Automatic Sensory Predictions: A Review of Predictive Mechanisms in the Brain and Their Link to Conscious Processing

Abstract:

The human brain has the astonishing capacity of integrating streams of sensory information from the environment and forming predictions about future events in an automatic way. Despite being initially developed for visual processing, the bulk of predictive coding research has subsequently focused on auditory processing, with the famous mismatch negativity signal as possibly the most studied signature of a surprise or prediction error (PE) signal. Auditory PEs are present during various consciousness states. Intriguingly, their presence and characteristics have been linked with residual levels of consciousness and return of awareness. In this review we first give an overview of the neural substrates of predictive processes in the auditory modality and their relation to consciousness. Then, we focus on different states of consciousness - wakefulness, sleep, anesthesia, coma, meditation, and hypnosis - and on what mysteries predictive processing has been able to disclose about brain functioning in such states. We review studies investigating how the neural signatures of auditory predictions are modulated by states of reduced or lacking consciousness. As a future outlook, we propose the combination of electrophysiological and computational techniques that will allow investigation of which facets of sensory predictive processes are maintained when consciousness fades away.

Authors:

  • Ruxandra I. Tivadar

  • Robert T. Knight

  • Athina Tzovara

Date: 2021

DOI: https://doi.org/10.3389/fnhum.2021.702520

View PDF


Prefrontal Lesions Disrupt Posterior Alpha–Gamma Coordination of Visual Working Memory Representations

Abstract:

How does the human brain prioritize different visual representations in working memory (WM)? Here, we define the oscillatory mechanisms supporting selection of “where” and “when” features from visual WM storage and investigate the role of pFC in feature selection. Fourteen individuals with lateral pFC damage and 20 healthy controls performed a visuospatial WM task while EEG was recorded. On each trial, two shapes were presented sequentially in a top/bottom spatial orientation. A retro-cue presented mid-delay prompted which of the two shapes had been in either the top/bottom spatial position or first/second temporal position. We found that cross-frequency coupling between parieto-occipital alpha (α; 8–12 Hz) oscillations and topographically distributed gamma (γ; 30–50 Hz) activity tracked selection of the distinct cued feature in controls. This signature of feature selection was disrupted in patients with pFC lesions, despite intact α–γ coupling independent of feature selection. These findings reveal a pFC-dependent parieto-occipital α–γ mechanism for the rapid selection of visual WM representations.

Authors:

  • Saeideh Davoudi

  • Mohsen Parto Dezfouli

  • Robert T. Knight

  • Mohammad Reza Daliri

  • Elizabeth L. Johnson

Date: 2021

DOI: https://doi.org/10.1162/jocn_a_01715

View PDF


Single-trial modeling separates multiple overlapping prediction errors during reward processing in human EEG

Abstract:

Learning signals during reinforcement learning and cognitive control rely on valenced reward prediction errors (RPEs) and non-valenced salience prediction errors (PEs) driven by surprise magnitude. A core debate in reward learning focuses on whether valenced and non-valenced PEs can be isolated in the human electroencephalogram (EEG). We combine behavioral modeling and single-trial EEG regression to disentangle sequential PEs in an interval timing task dissociating outcome valence, magnitude, and probability. Multiple regression across temporal, spatial, and frequency dimensions characterized a spatio-tempo-spectral cascade from early valenced RPE value to non-valenced RPE magnitude, followed by outcome probability indexed by a late frontal positivity. Separating negative and positive outcomes revealed the valenced RPE value effect is an artifact of overlap between two non-valenced RPE magnitude responses: frontal theta feedback-related negativity on losses and posterior delta reward positivity on wins. These results reconcile longstanding debates on the sequence of components representing reward and salience PEs in the human EEG.

Authors:

  • Colin W Hoy

  • Sheila C Steiner

  • Robert T Knight

Date: 2021

DOI: https://doi.org/10.1038/s42003-021-02426-1

View PDF


Gender bias in academia: A lifetime problem that needs solutions

Summary:

Despite increased awareness of the lack of gender equity in academia and a growing number of initiatives to address issues of diversity, change is slow, and inequalities remain. A major source of inequity is gender bias, which has a substantial negative impact on the careers, work-life balance, and mental health of underrepresented groups in science. Here, we argue that gender bias is not a single problem but manifests as a collection of distinct issues that impact researchers’ lives. We disentangle these facets and propose concrete solutions that can be adopted by individuals, academic institutions, and society.

Authors:

  • Anaïs Llorens

  • Athina Tzovara

  • Ludovic Bellier

  • Ilina Bhaya-Grossman

  • Aurélie Bidet-Caulet

  • William K Chang

  • Zachariah R Cross

  • Rosa Dominguez-Faus

  • Adeen Flinker

  • Yvonne Fonken

  • Mark A Gorenstein

  • Chris Holdgraf

  • Colin W Hoy

  • Maria V Ivanova

  • Richard T Jimenez

  • Soyeon Jun

  • Julia WY Kam

  • Celeste Kidd

  • Enitan Marcelle

  • Deborah Marciano

  • Stephanie Martin

  • Nicholas E Myers

  • Karita Ojala

  • Anat Perry

  • Pedro Pinheiro-Chagas

  • Stephanie K Riès

  • Ignacio Saez

  • Ivan Skelin

  • Katarina Slama

  • Brooke Staveland

  • Danielle S Bassett

  • Elizabeth A Buffalo

  • Adrienne L Fairhall

  • Nancy J Kopell

  • Laura J Kray

  • Jack J Lin

  • Anna C Nobre

  • Dylan Riley

  • Anne-Kristin Solbakk

  • Joni D Wallis

  • Xiao-Jing Wang

  • Shlomit Yuval-Greenberg

  • Sabine Kastner

  • Robert T Knight

  • Nina F Dronkers

Date: 2021

DOI: https://doi.org/10.1016/j.neuron.2021.06.002

View PDF


Aperiodic sleep networks promote memory consolidation

Abstract:

Hierarchical synchronization of sleep oscillations establishes communication pathways to support memory reactivation, transfer, and consolidation. From an information-theoretical perspective, oscillations constitute highly structured network states that provide limited information-coding capacity. Recent findings indicate that sleep oscillations occur in transient bursts that are interleaved with aperiodic network states, which were previously considered to be random noise. We argue that aperiodic activity exhibits unique and variable spatiotemporal patterns, providing an ideal information-rich neurophysiological substrate for imprinting new mnemonic patterns onto existing circuits. We discuss novel avenues in conceptualizing and quantifying aperiodic network states during sleep to further understand their relevance and interplay with sleep oscillations in support of memory consolidation.

Authors:

  • Randolph F Helfrich

  • Janna D Lendner

  • Robert T Knight

Date: 2021

DOI: https://doi.org/10.1016/j.tics.2021.04.009

View PDF


Intracranial recordings demonstrate medial temporal lobe engagement in visual search in humans

Abstract:

Visual search is a fundamental human behavior, which has been proposed to include two component processes: inefficient search (Search) and efficient search (Pop-out). According to extant research, these two processes map onto two separable neural systems located in the frontal and parietal association cortices. In the present study, we use intracranial recordings from 23 participants to delineate the neural correlates of Search and Pop-out with an unprecedented combination of spatiotemporal resolution and coverage across cortical and subcortical structures. First, we demonstrate a role for the medial temporal lobe in visual search, on par with engagement in frontal and parietal association cortex. Second, we show a gradient of increasing engagement over anatomical space from dorsal to ventral lateral frontal cortex. Third, we confirm previous work demonstrating nearly complete overlap in neural engagement across cortical regions in Search and Pop-out. We further demonstrate Pop-out selectivity manifesting as activity increase in Pop-out as compared to Search in a distributed set of sites including frontal cortex. This result is at odds with the view that Pop-out is implemented in low-level visual cortex or parietal cortex alone. Finally, we affirm a central role for the right lateral frontal cortex in Search.

Authors:

  • S. J. Katarina Slama

  • Richard Jimenez

  • Sujayam Saha

  • David King-Stephens

  • Kenneth D Laxer

  • Peter B Weber

  • Tor Endestad

  • Pål G Larsson

  • Anne-Kristin Solbakk

  • Jack J Lin

  • Robert T Knight

Date: 2021

DOI: https://doi.org/10.1162/jocn_a_01739

View PDF


Electrophysiological Decoding of Spatial and Color Processing in Human Prefrontal Cortex

Abstract:

The prefrontal cortex (PFC) plays a pivotal role in goal-directed cognition, yet its representational code remains an open problem with decoding techniques ineffective in disentangling task-relevant variables from PFC. Here we applied regularized linear discriminant analysis to human scalp EEG data and were able to distinguish a mental-rotation task versus a color-perception task with 87% decoding accuracy. Dorsal and ventral areas in lateral PFC provided the dominant features dissociating the two tasks. Our findings show that EEG can reliably decode two independent task states from PFC and emphasize the PFC dorsal/ventral functional specificity in processing the where rotation task versus the what color task.

Authors:

  • Byoung-Kyong Min

  • Hyun-Seok Kim

  • Wonjun Ko

  • Min-Hee Ahn

  • Heung-Il Suk

  • Dimitrios Pantazis

  • Robert T Knight

Date: 2021

DOI: https://doi.org/10.1016/j.neuroimage.2021.118165

View PDF


The role of the anterior nuclei of the thalamus in human memory processing

Abstract:

Extensive neuroanatomical connectivity between the anterior thalamic nuclei (ATN) and hippocampus and neocortex renders them well-placed for a role in memory processing, and animal, lesion, and neuroimaging studies support such a notion. The deep location and small size of the ATN have precluded their real-time electrophysiological investigation during human memory processing. However, ATN electrophysiological recordings from patients receiving electrodes implanted for deep brain stimulation for pharmacoresistant focal epilepsy have enabled high temporal resolution study of ATN activity. Theta frequency synchronization of ATN and neocortical oscillations during successful memory encoding, enhanced phase alignment, and coupling between ATN local gamma frequency activity and frontal neocortical and ATN theta oscillations provide evidence of an active role for the ATN in memory encoding, potentially integrating information from widespread neocortical sources. Greater coupling of a broader gamma frequency range with theta oscillations at rest than during memory encoding provides additional support for the hypothesis that the ATN play a role in selecting local, task-relevant high frequency activity associated with particular features of a memory trace.

Authors:

  • Catherine M Sweeney-Reed

  • Lars Buentjen

  • Jürgen Voges

  • Friedhelm C Schmitt

  • Tino Zaehle

  • Julia WY Kam

  • Jörn Kaufmann

  • Hans-Jochen Heinze

  • Hermann Hinrichs

  • Robert T Knight

  • Michael D Rugg

Date: 2021

DOI: https://doi.org/10.1016/j.neubiorev.2021.02.046

View PDF


Prefrontal lesions disrupt oscillatory signatures of spatiotemporal integration in working memory

Abstract:

How does the human brain integrate spatial and temporal information into unified mnemonic representations? Building on classic theories of feature binding, we first define the oscillatory signatures of integrating ‘where’ and ‘when’ information in working memory (WM) and then investigate the role of prefrontal cortex (PFC) in spatiotemporal integration. Fourteen individuals with lateral PFC damage and 20 healthy controls completed a visuospatial WM task while electroencephalography (EEG) was recorded. On each trial, two shapes were presented sequentially in a top/bottom spatial orientation. We defined EEG signatures of spatiotemporal integration by comparing the maintenance of two possible where-when configurations: the first shape presented on top and the reverse. Frontal delta-theta (δθ; 2–7 Hz) activity, frontal-posterior δθ functional connectivity, lateral posterior event-related potentials, and mesial posterior alpha phase-to-gamma amplitude coupling dissociated the two configurations in controls. WM performance and frontal and mesial posterior signatures of spatiotemporal integration were diminished in PFC lesion patients, whereas lateral posterior signatures were intact. These findings reveal both PFC-dependent and independent substrates of spatiotemporal integration and link optimal performance to PFC.

Authors:

  • Mohsen Parto Dezfouli

  • Saeideh Davoudi

  • Robert T Knight

  • Mohammad Reza Daliri

  • Elizabeth L Johnson

Date: 2021

DOI: https://doi.org/10.1016/j.cortex.2021.01.016

View PDF


Characterizing multi-word speech production using event-related potentials

Abstract:

Event‐related potentials (ERPs) derived from electroencephalography (EEG) have proven useful for understanding linguistic processes during language perception and production. Words are commonly produced in sequences, yet most ERP studies have used single‐word experimental designs. Single‐word designs reduce potential ERP overlap in word sequence production. However, word sequence production engages brain mechanisms in different ways than single word production. In particular, speech monitoring and planning mechanisms are more engaged than for single words since several words must be produced in a short period of time. This study evaluates the feasibility of recording ERP components in the context of word sequence production, and whether separate components could be isolated for each word. Scalp EEG data were acquired, while participants recited word sequences from memory at a regular pace, using a tongue‐twister paradigm. The results revealed fronto‐central error‐related negativity, previously associated with speech monitoring, which could be distinguished for each word. Its peak amplitude was sensitive to Cycle and Phonological Similarity. However, an effect of sequential production was also observable on baseline measures, indicating baseline shifts throughout the word sequence due to concurrent sustained medial‐frontal EEG activity. We also report a late left anterior negativity (LLAN), associated with verbal response planning and execution, onsetting around 100 ms before the first word in each cycle and sustained throughout the rest of the cycle. This work underlines the importance of considering the contribution of transient and sustained EEG activity on ERPs, and provides evidence that ERPs can be used to study sequential word production.

Authors:

  • Stephanie K. Ries

  • Svetlana Pinet

  • N. Bonnie Nozari

  • Robert T. Knight

Date: 2021

DOI: https://doi.org/10.1111/psyp.13788

View PDF


Distinct electrophysiological signatures of task-unrelated and dynamic thoughts

Abstract:

Humans spend much of their lives engaging with their internal train of thoughts. Traditionally, research focused on whether or not these thoughts are related to ongoing tasks, and has identified reliable and distinct behavioral and neural correlates of task-unrelated and task-related thought. A recent theoretical framework highlighted a different aspect of thinking—how it dynamically moves between topics. However, the neural correlates of such thought dynamics are unknown. The current study aimed to determine the electrophysiological signatures of these dynamics by recording electroencephalogram (EEG) while participants performed an attention task and periodically answered thought-sampling questions about whether their thoughts were 1) task-unrelated, 2) freely moving, 3) deliberately constrained, and 4) automatically constrained. We examined three EEG measures across different time windows as a function of each thought type: stimulus-evoked P3 event-related potentials and non–stimulus-evoked alpha power and variability. Parietal P3 was larger for task-related relative to task-unrelated thoughts, whereas frontal P3 was increased for deliberately constrained compared with unconstrained thoughts. Frontal electrodes showed enhanced alpha power for freely moving thoughts relative to non-freely moving thoughts. Alpha-power variability was increased for task-unrelated, freely moving, and unconstrained thoughts. Our findings indicate distinct electrophysiological patterns associated with task-unrelated and dynamic thoughts, suggesting these neural measures capture the heterogeneity of our ongoing thoughts.

Authors:

  • Julia WY Kam

  • Zachary C Irving

  • Caitlin Mills

  • Shawn Patel

  • Alison Gopnik

  • Robert T Knight

Date: 2021

DOI: https://doi.org/10.1073/pnas.2011796118

View PDF