Psychophysiology

Characterizing multi-word speech production using event-related potentials

Abstract:

Event‐related potentials (ERPs) derived from electroencephalography (EEG) have proven useful for understanding linguistic processes during language perception and production. Words are commonly produced in sequences, yet most ERP studies have used single‐word experimental designs. Single‐word designs reduce potential ERP overlap in word sequence production. However, word sequence production engages brain mechanisms in different ways than single word production. In particular, speech monitoring and planning mechanisms are more engaged than for single words since several words must be produced in a short period of time. This study evaluates the feasibility of recording ERP components in the context of word sequence production, and whether separate components could be isolated for each word. Scalp EEG data were acquired, while participants recited word sequences from memory at a regular pace, using a tongue‐twister paradigm. The results revealed fronto‐central error‐related negativity, previously associated with speech monitoring, which could be distinguished for each word. Its peak amplitude was sensitive to Cycle and Phonological Similarity. However, an effect of sequential production was also observable on baseline measures, indicating baseline shifts throughout the word sequence due to concurrent sustained medial‐frontal EEG activity. We also report a late left anterior negativity (LLAN), associated with verbal response planning and execution, onsetting around 100 ms before the first word in each cycle and sustained throughout the rest of the cycle. This work underlines the importance of considering the contribution of transient and sustained EEG activity on ERPs, and provides evidence that ERPs can be used to study sequential word production.

Authors:

  • Stephanie K. Ries

  • Svetlana Pinet

  • N. Bonnie Nozari

  • Robert T. Knight

Date: 2021

DOI: https://doi.org/10.1111/psyp.13788

View PDF


A differential role for human hippocampus in novelty and contextual processing: Implications for P300

Abstract:

The role of the hippocampus in P300 has long been debated. Here, we present a theoretical framework that elucidates hippocampal contributions to scalp P300 based on intracranial and lesion research combined with emerging evidence on the role of the hippocampus in rapid statistical learning, memory, and novelty processing. The P300 has been divided in two subcomponents: a fronto‐central P3a related to novelty and distractor processing, and a parietal P3b related to target detection. Interest in a role for hippocampus in scalp P300 was sparked by P3‐like ERPs measured intracranially in human hippocampus. Subsequent medial temporal lobe lesion studies show intact scalp P3b, indicating that the hippocampus is not critical for P3b. This contrasts with the scalp P3a, which was significantly diminished in human patients with lesions in the posterior hippocampus. This suggests a differential role for hippocampus in P3a and P3b. Our framework purports that the hippocampus plays a central role in distractor processing that leads to P3a generation in cortical regions. We also propose that the hippocampus is involved at the end of the cognitive episode for both P3a and P3b implementing contextual updating. P3‐like ERPs measured in hippocampus may reflect input signals from cortical regions implementing updates based on the outcome of cognitive processes underlying scalp P3, enabling a model update of the environment facilitated by the hippocampus. Overall, this framework proposes an active role for the hippocampus in novelty processing leading up to P3a generation, followed by contextual updating of the outcome of both scalp P3a and P3b.

Authors:

  • Yvonne M Fonken

  • Julia WY Kam

  • Robert T Knight

Date: 2019

DOI: https://doi.org/10.1111/psyp.13400

View PDF