Sustained attention and prediction: distinct brain maturation trajectories during adolescence

ABSTRACT

Adolescence is a key period for frontal cortex maturation necessary for the development of cognitive ability. Sustained attention and prediction are cognitive functions critical for optimizing sensory processing, and essential to efficiently adapt behaviors in an ever-changing world. The aim of the current study was to investigate the brain developmental trajectories of attentive and predictive processing through adolescence. We recorded EEG in 36 participants from the age of 12–24 years (three age groups: 12–14, 14–17, 18–24 years) to target development during early and late adolescence, and early adulthood. We chose a visual target detection task which loaded upon sustained attention, and we manipulated target predictability. Continued maturation of sustained attention after age 12 was evidenced by improved performance (hits, false alarms (FAs) and sensitivity) in a detection task, associated with a frontal shift in the scalp topographies of the Contingent Negative Variation (CNV) and P3 responses, with increasing age. No effect of age was observed on predictive processing, with all ages showing similar benefits in reaction time, increases in P3 amplitude (indexing predictive value encoding and memorization), increases in CNV amplitude (corresponding to prediction implementation) and reduction in target-P3 latency (reflecting successful prediction building and use), with increased predictive content. This suggests that adolescents extracted and used predictive information to generate predictions as well as adults. The present results show that predictive and attentive processing follow distinct brain developmental trajectories: prediction abilities seem mature by the age of 12 and sustained attention continues to improve after 12-years of age and is associated with maturational changes in the frontal cortices.




AUTHORS

  • Alix Thillay

  • S. Roux

  • Valerie Gissot

  • Isabelle Carteau-Martin

  • Robert T. Knight

  • Frederique Bonnet-Brilhault

  • Aurélie Bidet-Caulet

Date: 2015

DOI: 10.3389/fnhum.2015.00519, 2015

View PDF


Age-Related Changes in 1/f Neural Electrophysiological Noise

ABSTRACT

Aging is associated with performance decrements across multiple cognitive domains. The neural noise hypothesis, a dominant view of the basis of this decline, posits that aging is accompanied by an increase in spontaneous, noisy baseline neural activity. Here we analyze data from two different groups of human subjects: intracranial electrocorticography from 15 participants over a 38 year age range (15–53 years) and scalp EEG data from healthy younger (20 –30 years) and older (60 –70 years) adults to test the neural noise hypothesis from a 1/f noise perspective. Many natural phenomena, including electrophysiology, are characterized by 1/f noise. The defining characteristic of 1/f is that the power of the signal frequency content decreases rapidly as a function of the frequency ( f ) itself. The slope of this decay, the noise exponent (), is often1 for electrophysiological data and has been shown to approach white noise (defined as  0) with increasing task difficulty.Weobserved, in both electrophysiological datasets, that aging is associated with a flatter (more noisy) 1/f power spectral density, even at rest, and that visual cortical 1/f noise statistically mediates age-related impairments in visual working memory. These results provide electrophysiological support for the neural noise hypothesis of aging.





AUTHORS

  • Bradley Voytek

  • Mark A. Kramer

  • John Case

  • Kyle Q. Lepage

  • Zachary Tempesta

  • Robert T. Knight

  • Adam Gazzaley

Date: 2015

DOI: 10.1523/JNEUROSCI.2332-14.2015

View PDF


Task-related activity in sensorimotor cortex in Parkinson’s disease and essential tremor: changes in beta and gamma bands

Authors:

  • Nathan C. Rowland

  • Coralie De Hemptinne

  • N. C. Swann

  • Qasim Salman

  • Svjetlana Miocinovic

  • Jill Ostrem

  • Robert T. Knight

  • Philip A. Starr

Date: 2015

DOI: 10.3389/fnhum.2015.00512

View PDF

Abstract:

In Parkinson's disease patients in the OFF medication state, basal ganglia local field potentials exhibit changes in beta and gamma oscillations that correlate with reduced voluntary movement, manifested as rigidity and akinesia. However, magnetoencephalography and low-resolution electrocorticography (ECoG) studies in Parkinson's patients suggest that changes in sensorimotor cortical oscillations differ from those of the basal ganglia. To more clearly define the role of sensorimotor cortex oscillatory activity in Parkinson's, we performed intraoperative, high-resolution (4 mm spacing) ECoG recordings in 10 Parkinson's patients (2 females, ages 47–72) undergoing deep brain stimulation (DBS) lead placement in the awake, OFF medication state. We analyzed ECoG potentials during a computer-controlled reaching task designed to separate movement preparation from movement execution and compared findings to similar invasive recordings in eight patients with essential tremor (3 females, ages 59–78), a condition not associated with rigidity or akinesia. We show that (1) cortical beta spectral power at rest does not differ between Parkinson's and essential tremor patients (p = 0.85), (2) early motor preparation in Parkinson's patients in the OFF medication state is associated with a larger beta desynchronization compared to patients with essential tremor (p = 0.0061), and (3) cortical broadband gamma power is elevated in Parkinson's patients compared to essential tremor patients during both rest and task recordings (p = 0.004). Our findings suggest an oscillatory profile in sensorimotor cortex of Parkinson's patients that, in contrast to the basal ganglia, may act to promote movement to oppose the anti-kinetic bias of the dopamine-depleted state.

Where Does One Stand: A Biological Account of Preferred Interpersonal Distance

Authors:

  • Anat Perry

  • Nikolay Nichiporuk

  • Robert T. Knight

Date: 2015

DOI: 10.1093/scan/nsv115

View PDF

Abstract:

What determines how close you choose to stand to someone? Why do some people prefer farther distances than others? We hypothesized that an important factor is one's sensory sensitivity level, i.e. how sensitive one is to nearby visual stimulation, noise, touch or smell. The current study characterizes the behavioral, hormonal and electrophysiological metrics of interpersonal distance (IPD) preferences in relation to levels of sensory sensitivity. Using both an ecologically realistic task and EEG we found that sensory sensitivity levels predicted IPD preferences, such that the more sensitive one is the farther distance they prefer. Furthermore, electrophysiological evidence revealed that individuals with higher sensory sensitivity show more alpha suppression for approaching stimuli, strengthening the notion that early sensory cortical excitability is involved in one's social decision of how close to stand to another. The results provide evidence that a core human metric of social interaction is influenced by individual levels of sensory sensitivity.

How to stop or change a motor response: Laplacian and independent component approach


Authors:

  • M. Rangel-Gomez

  • Robert T. Knight

  • Ulrike M. Krämer

Date: 2015

DOI: 10.1016/j.ijpsycho.2015.01.012

View PDF

Abstract:

Response inhibition is an essential control function necessary to adapt one's behavior. This key cognitive capacity is assumed to be dependent on the prefrontal cortex and basal ganglia. It is unresolved whether varying inhibitory demands engage different control mechanisms or whether a single motor inhibitory mechanism is involved in any situation. We addressed this question by comparing electrophysiological activity in conditions that require stopping a response to conditions that require switching to an alternate response. Analyses of electrophysiological data obtained from stop-signal tasks are complicated by overlapping stimulus-related activity that is distributed over frontal and parietal cortical recording sites. Here, we applied Laplacian transformation and independent component analysis (ICA) to overcome these difficulties. Participants were faster in switching compared to stopping a response, but we did not observe differences in neural activity between these conditions. Both stop- and change-trials Laplacian transformed ERPs revealed a comparable bilateral parieto-occipital negativity around 180 ms and a frontocentral negativity around 220 ms. ICA results suggested an inhibition-related frontocentral component which was characterized by a negativity around 200 ms with a likely source in anterior cingulate cortex. The data provide support for the importance of posterior medial frontal areas in inhibitory response control and are consistent with a common neural pathway underlying stopping and changing of a motor response. The methodological approach proved useful to distinguish frontal and parietal sources despite similar timing and the ICA approach allowed assessment of single-trial data with respect to behavioral data.

Oscillatory dynamics coordinating human frontal networks in support of goal maintenance

Abstract:

Humans have a capacity for hierarchical cognitive control—the ability to simultaneously control immediate actions while holding more abstract goals in mind. Neuropsychological and neuroimaging evidence suggests that hierarchical cognitive control emerges from a frontal architecture whereby prefrontal cortex coordinates neural activity in the motor cortices when abstract rules are needed to govern motor outcomes. We utilized the improved temporal resolution of human intracranial electrocorticography to investigate the mechanisms by which frontal cortical oscillatory networks communicate in support of hierarchical cognitive control. Responding according to progressively more abstract rules resulted in greater frontal network theta phase encoding (4–8 Hz) and increased prefrontal local neuronal population activity (high gamma amplitude, 80–150 Hz), which predicts trial-by-trial response times. Theta phase encoding coupled with high gamma amplitude during inter-regional information encoding, suggesting that inter-regional phase encoding is a mechanism for the dynamic instantiation of complex cognitive functions by frontal cortical subnetworks.

Authors:

  • Bradley Voytek

  • Andrew S. Kayser

  • David Badre

  • David Fegen

  • Edward F. Chang

  • Nathan E. Crone

  • Josef Parvizi

  • Robert T. Knight

  • Mark D'Esposito

Date: 2015

DOI: 10.1038/nn.4071

View PDF

Specifying the role of the left prefrontal cortex in word selection

Abstract:

Word selection allows us to choose words during language production. This is often viewed as a competitive process wherein a lexical representation is retrieved among semantically-related alternatives. The left prefrontal cortex (LPFC) is thought to help overcome competition for word selection through top-down control. However, whether the LPFC is always necessary for word selection remains unclear. We tested 6 LPFC-injured patients and controls in two picture naming paradigms varying in terms of item repetition. Both paradigms elicited the expected semantic interference effects (SIE), reflecting interference caused by semantically-related representations in word selection. However, LPFC patients as a group showed a larger SIE than controls only in the paradigm involving item repetition. We argue that item repetition increases interference caused by semantically-related alternatives, resulting in increased LPFC-dependent cognitive control demands. The remaining network of brain regions associated with word selection appears to be sufficient when items are not repeated.

Authors:

  • Stephanie Ries

  • C.R. Karzmark

  • E. Navarrete

  • Robert T. Knight

  • Nina F. Dronkers

Date: 2015

View PDF

Thalamic theta phase alignment predicts human memory formation and anterior thalamic cross-frequency coupling

Authors:

  • Catherine M. Sweeney-Reed

  • Tino Zaehle

  • Jürgen Voges

  • Friedhelm Schmitt

  • Lars Buentjen

  • Klaus Kopitzki

  • Hermann Hinrichs

  • Hans-Jochen Heinze

  • Michael D. Rugg

  • Robert T. Knight

  • Alan Richardson-Klavehn

Date: 2015

DOI: 10.7554/eLife.07578

View PDF

Abstract:

Previously we reported electrophysiological evidence for a role for the anterior thalamic nucleus (ATN) in human memory formation (Sweeney-Reed et al. 2014). Theta-gamma cross-frequency coupling (CFC) predicted successful memory formation, with the involvement of gamma oscillations suggesting memory-relevant local processing in the ATN. The importance of the theta frequency range in memory processing is well-established, and phase alignment of oscillations is considered to be necessary for synaptic plasticity. We hypothesized that theta phase alignment in the ATN would be necessary for memory encoding. Further analysis of the electrophysiological data reveal that phase alignment in the theta rhythm was greater during successful compared with unsuccessful encoding, and that this alignment was correlated with the CFC. These findings support an active processing role for the ATN during memory formation.

Redefining the role of Broca’s area in speech

Authors:

  • Adeen Flinker

  • Anna Korzeniewska

  • Avgusta Shestyuk

  • Piotr Franaszczuk

  • Nina F. Dronkers

  • Robert T. Knight

  • Nathan E. Crone

Date: 2015

DOI: 10.1073/pnas.1414491112

View PDF

Abstract:

For over a century neuroscientists have debated the dynamics by which human cortical language networks allow words to be spoken. Although it is widely accepted that Broca’s area in the left inferior frontal gyrus plays an important role in this process, it was not possible, until recently, to detail the timing of its recruitment relative to other language areas, nor how it interacts with these areas during word production. Using direct cortical surface recordings in neurosurgical patients, we studied the evolution of activity in cortical neuronal populations, as well as the Granger causal interactions between them. We found that, during the cued production of words, a temporal cascade of neural activity proceeds from sensory representations of words in temporal cortex to their corresponding articulatory gestures in motor cortex. Broca’s area mediates this cascade through reciprocal interactions with temporal and frontal motor regions. Contrary to classic notions of the role of Broca’s area in speech, while motor cortex is activated during spoken responses, Broca’s area is surprisingly silent. Moreover, when novel strings of articulatory gestures must be produced in response to non- word stimuli, neural activity is enhanced in Broca’s area, but not in motor cortex. These unique data provide evidence that Broca’s area coordinates the transformation of information across large-scale cortical networks involved in spoken word production. In this role, Broca’s area formulates an appropriate articulatory code to be implemented by motor cortex.

Intracranial recordings and human memory

Authors:

  • Elizabeth L. Johnson

  • Robert T. Knight

Date: 2015

DOI: 10.1016/j.conb.2014.07.021

View PDF

Abstract:

Recent work involving intracranial recording during human memory performance provides superb spatiotemporal resolution on mnemonic processes. These data demonstrate that the cortical regions identified in neuroimaging studies of memory fall into temporally distinct networks and the hippocampal theta activity reported in animal memory literature also plays a central role in human memory. Memory is linked to activity at multiple interacting frequencies, ranging from 1 to 500 Hz. High-frequency responses and coupling between different frequencies suggest that frontal cortex activity is critical to human memory processes, as well as a potential key role for the thalamus in neocortical oscillations. Future research will inform unresolved questions in the neuroscience of human memory and guide creation of stimulation protocols to facilitate function in the damaged brain.

Necessary, Yet Dissociable Contributions of the Insular and Ventromedial Prefrontal Cortices to Norm Adaptation: Computational and Lesion Evidence in Humans

Authors:

  • Xiaosi Gu

  • Xingchao Wang

  • Andreas Hula

  • Shiwei Wang

  • Shuai Xu

  • Terry Lohrenz

  • Robert T. Knight

  • Zhixian Gao

  • Peter Dayan

  • P. Read Montague

Date: 2015

DOI: 10.1523/JNEUROSCI.2906-14.2015

View PDF

Abstract:

Social norms and their enforcement are fundamental to human societies. The ability to detect deviations from norms and to adapt to norms in a changing environment is therefore important to individuals’ normal social functioning. Previous neuroimaging studies have highlighted the involvement of the insular and ventromedial prefrontal (vmPFC) cortices in representing norms. However, the necessity and dissociability of their involvement remain unclear. Using model-based computational modeling and neuropsychological lesion approaches, we examined the contributions of the insula and vmPFC to norm adaptation in seven human patients with focal insula lesions and six patients with focal vmPFC lesions, in comparison with forty neurologically intact controls and six brain-damaged controls. There were three computational signals of interest as participants played a fairness game (ultimatum game): sensitivity to the fairness of offers, sensitivity to deviations from expected norms, and the speed at which people adapt to norms. Significant group differences were assessed using bootstrapping methods. Patients with insula lesions displayed abnormally low adaptation speed to norms, yet detected norm violations with greater sensitivity than controls. Patients with vmPFC lesions did not have such abnormalities, but displayed reduced sensitivity to fairness and were more likely to accept the most unfair offers. These findings provide compelling computational and lesion evidence supporting the necessary, yet dissociable roles of the insula and vmPFC in norm adaptation in humans: the insula is critical for learning to adapt when reality deviates from norm expectations, and that the vmPFC is important for valuation of fairness during social exchange.

The electrophysiology of language production: what could be improved

Authors:

  • Vitoria Piai

  • Stephanie Ries

  • Robert T. Knight

Date: 2015

DOI: 10.3389/fpsyg.2014.01560

View PDF

Abstract:

Recently, the field of spoken-word production has seen an increasing interest in the use of the electroencephalogram (EEG), mainly for event-related potentials (ERPs). These are exciting times to be a language production researcher. However, no matter how much we would like our results to speak to our theories, they can only do so if our methods are formally correct and valid, and reported in ways that allow replicability. Inappropriate practices in signal processing and statistical testing, when applied to our investigations, may render our conclusions invalid or non-generalizable. Here, we first present some issues in signal processing and statistical testing that we think deserve more attention when analysing data, reporting results, and making inferences. These issues are not new to electrophysiology, so our sole contribution is to reiterate them in order to provide pointers to literature where they have been discussed in more detail and solutions have been proposed. We then discuss other issues pertinent to our investigations of overt word-production because of the effects (and potential confounds) that speaking will have on the signal. Although we cannot provide answers to some of the issues raised, we invite researchers in the field to jointly work on solutions so that the topic of the electrophysiology of word production can thrive on solid grounds.

Sensory Deviancy Detection Measured Directly Within the Human Nucleus Accumbens

Authors:

  • S. Durschmid

  • Tino Zauhle

  • Hermann Hinrichs

  • Hans-Jochen Heinze

  • Jürgen Voges

  • Marta Garrido

  • Raymond J. Dolan

  • Robert T. Knight

Date: 2015

DOI: 10.1093/cercor/bhu304

View PDF

Abstract:

Rapid changes in the environment evoke a comparison between expectancy and actual outcome to inform optimal subsequent behavior. The nucleus accumbens (NAcc), a key interface between the hippocampus and neocortical regions, is a candidate region for mediating this comparison. Here, we report event-related potentials obtained from the NAcc using direct intracranial recordings in 5 human participants while they listened to trains of auditory stimuli differing in their degree of deviation from repetitive background stimuli. NAcc recordings revealed an early mismatch signal (50–220 ms) in response to all deviants. NAcc activity in this time window was also sensitive to the statistics of stimulus deviancy, with larger amplitudes as a function of the level of deviancy. Importantly, this NAcc mismatch signal also predicted generation of longer latency scalp potentials (300–400 ms). The results provide direct human evidence that the NAcc is a key component of a network engaged in encoding statistics of the sensory environmental.

Corticothalamic phase synchrony and cross-frequency coupling predict human memory formation

Authors:

  • Catherine M. Sweeney-Reed

  • Tino Zaehle

  • Jürgen Voges

  • Friedhelm Schmitt

  • Lars Buentjen

  • Klaus Kopitzki

  • Christine Esslinger

  • Hermann Hinrichs

  • Hans-Jochen Heinze

  • Robert T. Knight

  • Alan Richardson-Klavehn

Date: 2014

DOI: 10.7554/eLife.05352.001

View PDF

Abstract:

The anterior thalamic nucleus (ATN) is thought to play an important role in a brain network involving the hippocampus and neocortex, which enables human memories to be formed. However, its small size and location deep within the brain have impeded direct investigation in humans with non-invasive techniques. Here we provide direct evidence for a functional role for the ATN in memory formation from rare simultaneous human intrathalamic and scalp electroencephalogram (EEG) recordings from eight volunteering patients receiving intrathalamic electrodes implanted for the treatment of epilepsy, demonstrating real-time communication between neocortex and ATN during successful memory encoding. Neocortical-ATN theta oscillatory phase synchrony of local field potentials and neocortical-theta-to-ATN-gamma cross-frequency coupling during presentation of complex photographic scenes predicted later memory for the scenes, demonstrating a key role for the ATN in human memory encoding.

Before it is too late: Addressing professional responsibility in late-onset Alzheimer's dementia research and pre symptomatic prediction

Authors:

  • Silke Schichtanz

  • Mark Schweda

  • Jesse Ballenger

  • Patrick J. Fox

  • Jodi Halpern

  • J. Kramer

  • Guy Micco

  • Stephen G. Post

  • Charis Thompson

  • Robert T. Knight

  • William Jagust

Date: 2014

DOI: 10.3389/fnhum.2014.00921

View PDF

Abstract:

The development of a wide array of molecular and neuroscientific biomarkers can provide the possibility to visualize the course of Alzheimer’s disease (AD) at early stages. Many of these biomarkers are aimed at detecting not only a preclinical, but also a pre-symptomatic state. They are supposed to facilitate clinical trials aiming at treatments that attack the disease at its earliest stage or even prevent it. The increasing number of such biomarkers currently tested and now partly proposed for clinical implementation calls for critical reflection on their aims, social benefits, and risks. This position paper summarizes major challenges and responsibilities. Its focus is on the ethical and social problems involved in the organization and application of dementia research, as well as in healthcare provision from a cross-national point of view. The paper is based on a discussion of leading dementia experts from neuroscience, neurology, social sciences, and bioethics in the United States and Europe. It thus reflects a notable consensus across various disciplines and national backgrounds. We intend to initiate a debate on the need for actions within the researchers’ national and international communities.

Damage to dorsolateral prefrontal cortex diminishes the impact of honesty motives on altruistic giving


Authors:

  • Lusha Zhu

  • Adrianna C. Jenkins

  • Eric Set

  • Robert T. Knight

  • Pearl H. Chiu

  • B.R. King-Casas

  • Ming Hsu

Date: 2014

DOI: 10.1038/nn.3798

View PDF

Abstract:

Substantial correlational evidence suggests that prefrontal regions are critical to honest and dishonest behavior, but causal evidence specifying the nature of this involvement remains absent. We found that lesions of the human dorsolateral prefrontal cortex (DLPFC) decreased the effect of honesty concerns on behavior in economic games that pit honesty motives against self-interest, but did not affect decisions when honesty concerns were absent. These results point to a causal role for DLPFC in honest behavior.

Support vector machine and hidden Markov model based decoding of finger movements using electrocorticography

Authors:

  • Tobias Wissel

  • Tim Pfeiffer

  • Robert Frysch

  • Robert T. Knight

  • Edward F. Chang

  • Hermann Hinrichs

  • Jochem W. Rieger

  • Georg Rose

Date: 2013

DOI: 10.1088/1741-2560/10/5/056020

View PDF

Abstract:

Objective. Support vector machines (SVM) have developed into a gold standard for accurate classification in brain–computer interfaces (BCI). The choice of the most appropriate classifier for a particular application depends on several characteristics in addition to decoding accuracy. Here we investigate the implementation of hidden Markov models (HMM) for online BCIs and discuss strategies to improve their performance. Approach. We compare the SVM, serving as a reference, and HMMs for classifying discrete finger movements obtained from electrocorticograms of four subjects performing a finger tapping experiment. The classifier decisions are based on a subset of low-frequency time domain and high gamma oscillation features. Main results. We show that decoding optimization between the two approaches is due to the way features are extracted and selected and less dependent on the classifier. An additional gain in HMM performance of up to 6% was obtained by introducing model constraints. Comparable accuracies of up to 90% were achieved with both SVM and HMM with the high gamma cortical response providing the most important decoding information for both techniques. Significance. We discuss technical HMM characteristics and adaptations in the context of the presented data as well as for general BCI applications. Our findings suggest that HMMs and their characteristics are promising for efficient online BCIs.

Double Dissociation of the roles of the left and right prefrontal cortices in anticipatory regulation of action

Authors:

  • Stephanie Ries

  • Ian Greenhouse

  • Nina F. Dronkers

  • Kathleen Y. Haaland

  • Robert T. Knight

Date: 2014

DOI: 10.1016/j.neuropsychologia.2014.08.026

PubMed: 25201047

View PDF

Abstract:

Recent actions can benefit or disrupt our current actions and the prefrontal cortex (PFC) is thought to play a major role in the regulation of these actions before they occur. The left PFC has been associated with overcoming interference from past events in the context of language production and working memory. The right PFC, and especially the right IFG, has been associated with preparatory inhibition processes. But damage to the right PFC has also been associated with impairment in sustaining actions in motor intentional disorders. Moreover, bilateral dorsolateral PFC has been associated with the ability to maintain task-sets, and improve the performance of current actions based on previous experience. However, potential hemispheric asymmetries in anticipatory regulation of action have not yet been delineated. In the present study, patients with left (n=7) vs. right (n=6) PFC damage due to stroke and 14 aged- and education-matched controls performed a picture naming and a verbal Simon task (participants had to say "right" or "left" depending on the color of the picture while ignoring its position). In both tasks, performance depended on the nature of the preceding trial, but in different ways. In the naming task, performance decreased if previous pictures were from the same rather than from different semantic categories (i.e., semantic interference effect). In the Simon task, performance was better for both compatible (i.e., response matching the position of the stimulus) and incompatible trials when preceded by a trial of the same compatibility (i.e. Gratton effect) relative to sequential trials of different compatibility. Left PFC patients were selectively impaired in picture naming; they had an increased semantic interference effect compared to both right PFC patients and aged-matched controls. Conversely, right PFC patients were selectively impaired in the Simon task compared to controls or left PFC patients; they showed no benefit when sequential trials were compatible (cC vs. iC trials) or a decreased Gratton effect. These results provide evidence for a double dissociation between left and right PFC in the anticipatory regulation of action. Our results are in agreement with a preponderant role of the left PFC in overcoming proactive interference from competing memory representations and provide evidence that the right PFC, plays a role in sustaining goal-directed actions consistent with clinical data in right PFC patients with motor intentional disorders.

Insights into human behavior from lesions to prefrontal cortex


Authors:

  • Sara Szczepanski

  • Robert T. Knight

Date: 2014

DOI: 10.1016/j.neuron.2014.08.011

View PDF

Abstract:

The prefrontal cortex (PFC), a cortical region that was once thought to be functionally insignificant, is now known to play an essential role in the organization and control of goal-directed thought and behavior. Neuroimaging, neurophysiological, and modeling techniques have led to tremendous advances in our understanding of PFC functions over the last few decades. It should be noted, however, that neurological, neuropathological, and neuropsychological studies have contributed some of the most essential, historical, and often prescient conclusions regarding the functions of this region. Importantly, examination of patients with brain damage allows one to draw conclusions about whether a brain area is necessary for a particular function. Here, we provide a broad overview of PFC functions based on behavioral and neural changes resulting from damage to PFC in both human patients and nonhuman primates.

Dynamic changes in phase-amplitude coupling facilitate spatial attention control in fronto-parietal cortex

Authors:

  • Sara Szczepanski

  • Nathan E. Crone

  • Rachel A. Kuperman

  • Kurtis I. Auguste

  • Josef Parvizi

  • Robert T. Knight

Date: 2014

DOI: 10.1371/journal.pbio.1001936

PubMed: 4144794

View PDF

Abstract:

Attention is a core cognitive mechanism that allows the brain to allocate limited resources depending on current task demands. A number of frontal and posterior parietal cortical areas, referred to collectively as the fronto-parietal attentional control network, are engaged during attentional allocation in both humans and non-human primates. Numerous studies have examined this network in the human brain using various neuroimaging and scalp electrophysiological techniques. However, little is known about how these frontal and parietal areas interact dynamically to produce behavior on a fine temporal (sub-second) and spatial (sub-centimeter) scale. We addressed how human fronto-parietal regions control visuospatial attention on a fine spatiotemporal scale by recording electrocorticography (ECoG) signals measured directly from subdural electrode arrays that were implanted in patients undergoing intracranial monitoring for localization of epileptic foci. Subjects (n=8) performed a spatial-cuing task, in which they allocated visuospatial attention to either the right or left visual field and detected the appearance of a target. We found increases in high gamma (HG) power (70–250 Hz) time-locked to trial onset that remained elevated throughout the attentional allocation period over frontal, parietal, and visual areas. These HG power increases were modulated by the phase of the ongoing delta/theta (2–5 Hz) oscillation during attentional allocation. Critically, we found that the strength of this delta/theta phase-HG amplitude coupling predicted reaction times to detected targets on a trial-by-trial basis. These results highlight the role of delta/theta phase-HG amplitude coupling as a mechanism for sub-second facilitation and coordination within human fronto-parietal cortex that is guided by momentary attentional demands.