Ulrike M. Krämer

Frontal and motor cortex contributions to response inhibition: evidence from electrocorticography

ABSTRACT

Changes in the environment require rapid modification or inhibition of ongoing behavior. We used the stop-signal paradigm and intracranial recordings to investigate response preparation, inhibition, and monitoring of task-relevant information. Electrocorticographic data were recorded in eight patients with electrodes covering frontal, temporal, and parietal cortex, and time-frequency analysis was used to examine power differences in the beta (13–30 Hz) and high-gamma bands (60 –180 Hz). Over motor cortex, beta power decreased, and high-gamma power increased during motor preparation for both go trials (Go) and unsuccessful stops (US). For successful stops (SS), beta increased, and high-gamma was reduced, indexing the cancellation of the prepared response. In the middle frontal gyrus (MFG), stop signals elicited a transient high-gamma increase. The MFG response occurred before the estimated stop-signal reaction time but did not distinguish between SS and US trials, likely signaling attention to the salient stop stimulus. A postresponse high-gamma increase in MFG was stronger for US compared with SS and absent in Go, supporting a role in behavior monitoring. These results provide evidence for differential contributions of frontal subregions to response inhibition, including motor preparation and inhibitory control in motor cortex and cognitive control and action evaluation in lateral prefrontal cortex.






AUTHORS

  • Y.M. Fonken

  • Jochem W. Rieger

  • Elinor Tzvi

  • Nathan E. Crone

  • Edward F. Chang

  • Josef Parvizi

  • Robert T. Knight

  • Ulrike M. Krämer

Date: 2016

DOI: 10.1038/srep25803

View PDF


How to stop or change a motor response: Laplacian and independent component approach


Authors:

  • M. Rangel-Gomez

  • Robert T. Knight

  • Ulrike M. Krämer

Date: 2015

DOI: 10.1016/j.ijpsycho.2015.01.012

View PDF

Abstract:

Response inhibition is an essential control function necessary to adapt one's behavior. This key cognitive capacity is assumed to be dependent on the prefrontal cortex and basal ganglia. It is unresolved whether varying inhibitory demands engage different control mechanisms or whether a single motor inhibitory mechanism is involved in any situation. We addressed this question by comparing electrophysiological activity in conditions that require stopping a response to conditions that require switching to an alternate response. Analyses of electrophysiological data obtained from stop-signal tasks are complicated by overlapping stimulus-related activity that is distributed over frontal and parietal cortical recording sites. Here, we applied Laplacian transformation and independent component analysis (ICA) to overcome these difficulties. Participants were faster in switching compared to stopping a response, but we did not observe differences in neural activity between these conditions. Both stop- and change-trials Laplacian transformed ERPs revealed a comparable bilateral parieto-occipital negativity around 180 ms and a frontocentral negativity around 220 ms. ICA results suggested an inhibition-related frontocentral component which was characterized by a negativity around 200 ms with a likely source in anterior cingulate cortex. The data provide support for the importance of posterior medial frontal areas in inhibitory response control and are consistent with a common neural pathway underlying stopping and changing of a motor response. The methodological approach proved useful to distinguish frontal and parietal sources despite similar timing and the ICA approach allowed assessment of single-trial data with respect to behavioral data.