Neuroscience

Spectral imprints of working memory for everyday associations in the frontoparietal network

ABSTRACT

How does the human brain rapidly process incoming information in working memory? In growing divergence from a single-region focus on the prefrontal cortex (PFC), recent work argues for emphasis on how distributed neural networks are rapidly coordinated in support of this central neurocognitive function. Previously, we showed that working memory for everyday “what,” “where,” and “when” associations depends on multiplexed oscillatory systems, in which signals of different frequencies simultaneously link the PFC to parieto-occipital and medial temporal regions, pointing to a complex web of sub-second, bidirectional interactions. Here, we used direct brain recordings to delineate the frontoparietal oscillatory correlates of working memory with high spatiotemporal precision. Seven intracranial patients with electrodes simultaneously localized to prefrontal and parietal cortices performed a visuospatial working memory task that operationalizes the types of identity and spatiotemporal information we encounter every day. First, task-induced oscillations in the same delta-theta (2–7 Hz) and alpha-beta (9–24 Hz) frequency ranges previously identified using scalp electroencephalography (EEG) carried information about the contents of working memory. Second, maintenance was linked to directional connectivity from the parietal cortex to the PFC. However, presentation of the test prompt to cue identity, spatial, or temporal information changed delta-theta coordination from a unidirectional, parietal-led system to a bidirectional, frontoparietal system. Third, the processing of spatiotemporal information was more bidirectional in the delta-theta range than was the processing of identity information, where alpha-beta connectivity did not exhibit sensitivity to the contents of working memory. These findings implicate a bidirectional delta-theta mechanism for frontoparietal control over the contents of working memory.




AUTHORS

  • Elizabeth L. Johnson

  • David King-Stephens

  • Peter B. Weber

  • Kenneth D. Laxer

  • Jack J. Lin

  • Robert T. Knight

Date: 2019

DOI: 10.3389/fnsys.2018.00065

View PDF


Human posterior parietal cortex responds to visual stimuli as early as peristriate occipital cortex

ABSTRACT

Much of what is known about the timing of visual processing in the brain is inferred from intracranial studies in monkeys, with human data limited to mainly noninvasive methods with lower spatial resolution. Here, we estimated visual onset latencies from electrocorticographic (ECoG) recordings in a patient who was implanted with 112 subdural electrodes, distributed across the posterior cortex of the right hemisphere, for presurgical evaluation of intractable epilepsy. Functional MRI prior to surgery was used to determine boundaries of visual areas. The patient was presented with images of objects from several categories. Event‐related potentials (ERPs) were calculated across all categories excluding targets, and statistically reliable onset latencies were determined, using a bootstrapping procedure over the single trial baseline activity in individual electrodes. The distribution of onset latencies broadly reflected the known hierarchy of visual areas, with the earliest cortical responses in primary visual cortex, and higher areas showing later responses. A clear exception to this pattern was a robust, statistically reliable and spatially localized, very early response, on the bank of the posterior intraparietal sulcus (IPS). The response in the IPS started nearly simultaneously with responses detected in peristriate visual areas, around 60 ms poststimulus onset. Our results support the notion of early visual processing in the posterior parietal lobe, not respecting traditional hierarchies, and give direct evidence for onset times of visual responses across the human cortex.







AUTHORS

  • Tamar I. Regev 

  • Jonathan Winawer 

  • Edden M. Gerber 

  • Robert T. Knight 

  • Leon Y. Deouell

Date: 2018

DOI: 10.1111/ejn.14164

View PDF


Lesion evidence for a critical role of left posterior but not frontal areas in alpha–beta power decreases during context-driven word production

ABSTRACT

Different frequency bands in the electroencephalogram are postulated to support distinct language functions. Studies have suggested that alpha-beta power decreases may index word-retrieval processes. In context-driven word retrieval, participants hear lead-in sentences that either constrain the final word ('He locked the door with the') or not ('She walked in here with the'). The last word is shown as a picture to be named. Previous studies have consistently found alpha-beta power decreases prior to picture onset for constrained relative to unconstrained sentences, localised to the left lateral-temporal and lateral-frontal lobes. However, the relative contribution of temporal versus frontal areas to alpha-beta power decreases is unknown. We recorded the electroencephalogram from patients with stroke lesions encompassing the left lateral-temporal and inferior-parietal regions or left-lateral frontal lobe and from matched controls. Individual participant analyses revealed a behavioural sentence context facilitation effect in all participants, except for in the two patients with extensive lesions to temporal and inferior parietal lobes. We replicated the alpha-beta power decreases prior to picture onset in all participants, except for in the two same patients with extensive posterior lesions. Thus, whereas posterior lesions eliminated the behavioural and oscillatory context effect, frontal lesions did not. Hierarchical clustering analyses of all patients' lesion profiles, and behavioural and electrophysiological effects identified those two patients as having a unique combination of lesion distribution and context effects. These results indicate a critical role for the left lateral-temporal and inferior parietal lobes, but not frontal cortex, in generating the alpha-beta power decreases underlying context-driven word production.






AUTHORS

  • Vitoria Piai

  • Joost Rommers

  • Robert T. Knight

Date: 2017

DOI: 10.1111/ejn.13695

View PDF


Anterior thalamic high frequency band activity is coupled with theta oscillations at rest

ABSTRACT

Cross-frequency coupling (CFC) between slow and fast brain rhythms, in the form of phase–amplitude coupling (PAC), is proposed to enable the coordination of neural oscillatory activity required for cognitive processing. PAC has been identified in the neocortex and mesial temporal regions, varying according to the cognitive task being performed and also at rest. PAC has also been observed in the anterior thalamic nucleus (ATN) during memory processing. The thalamus is active during the resting state and has been proposed to be involved in switching between task-free cognitive states such as rest, in which attention is internally-focused, and externally-focused cognitive states, in which an individual engages with environmental stimuli. It is unknown whether PAC is an ongoing phenomenon during the resting state in the ATN, which is modulated during different cognitive states, or whether it only arises during the performance of specific tasks. We analyzed electrophysiological recordings of ATN activity during rest from seven patients who received thalamic electrodes implanted for treatment of pharmacoresistant focal epilepsy. PAC was identified between theta (4–6 Hz) phase and high frequency band (80–150 Hz) amplitude during rest in all seven patients, which diminished during engagement in tasks involving an external focus of attention. The findings are consistent with the proposal that theta–gamma coupling in the ATN is an ongoing phenomenon, which is modulated by task performance.

AUTHORS

  • Catherine M. Sweeney-Reed

  • Tino Zauhle

  • Jürgen Voges

  • Friedhelm Schmitt

  • Lars Buentjen

  • Viola Borchardt

  • Hermann Hinrichs

  • Hans-Jochen Heinze

  • Michael D. Rugg

  • Robert T. Knight

Date: 2017

DOI: 10.3389/fnhum.2017.00358

View PDF


Atypical brain mechanisms of prediction according to uncertainty in autism

ABSTRACT

Resistance to change is often reported in autism and may arise from an inability to predict events in uncertain contexts. Using EEG recorded in 12 adults with autism and age-matched controls performing a visual target detection task, we characterized the influence of a certain context (targets preceded by a predictive sequence of three distinct stimuli) or an uncertain context (random targets) on behavior and electrophysiological markers of predictive processing. During an uncertain context, adults with autism were faster than controls to detect targets. They also had an enhancement in CNV amplitude preceding all random stimuli—indexing enhanced preparatory mechanisms, and an earlier N2 to targets—reflecting faster information processing—compared to controls. During a certain context, both controls and adults with autism presented an increase in P3 amplitude to predictive stimuli—indexing information encoding of the predictive sequence, an enhancement in CNV amplitude preceding predictable targets—corresponding to the deployment of preparatory mechanisms, and an earlier P3 to predictable targets—reflecting efficient prediction building and implementation. These results suggest an efficient extraction of predictive information to generate predictions in both controls and adults with autism during a certain context. However, adults with autism displayed a failure to decrease mu power during motor preparation accompanied by a reduced benefit in reaction times to predictable targets. The data reveal that patients with autism over-anticipate stimuli occurring in an uncertain context, in accord with their sense of being overwhelmed by incoming information. These results suggest that adults with autism cannot flexibly modulate cortical activity according to changing levels of uncertainty.




AUTHORS

  • Alix Thillay

  • Mathieu Lemaire

  • S. Roux

  • Emmanuelle Houy-Durand

  • C. Barthelemy

  • Robert T. Knight

  • Aurélie Bidet-Caulet

  • Frederique Bonnet-Brilhault

Date: 2016

DOI: 10.3389/fnins.2016.00317

View PDF


Frontal monitoring and parietal evidence: mechanisms of error correction

ABSTRACT

When we respond to a stimulus, our decisions are based not only on external stimuli but also on our ongoing performance. If the response deviates from our goals, monitoring and decision-making brain areas interact so that future behavior may change. By taking advantage of natural variation in error salience, as measured by the RT taken to correct an error (RTEC), here we argue that an evidence accumulation framework provides a potential underlying mechanism for this variable process of error identification and correction, as evidenced by covariation of frontal monitoring and parietal decision-making processes. We study two early EEG signals linked to monitoring within medial PFC—the error-related negativity (ERN) and frontocentral theta activity—and a third EEG signal, the error positivity (Pe), that is thought to share the same parietal substrates as a signal (the P3b) proposed to reflect evidence accumulation. As predicted, our data show that on slow RTEC trials, frontal monitoring resources are less strongly employed, and the latency of the Pe is longer. Critically, the speed of the RTEC also covaries with the magnitude of subsequent neural (intertrial alpha power) and behavioral (post-error slowing) adjustments following the correction. These results are synthesized to describe a timing diagram for adaptive decision-making after errors and support a potential evidence accumulation mechanism in which error signaling is followed by rapid behavioral adjustments.




AUTHORS

  • Ana Navarro-Cebrian

  • Robert T. Knight

  • Andrew S. Kayser

Date: 2016

DOI: 10.1162/jocn_a_00962

View PDF


Behavioral and EEG Evidence for Auditory Memory Suppression

ABSTRACT

The neural basis of motivated forgetting using the Think/No-Think (TNT) paradigm is receiving increased attention with a particular focus on the mechanisms that enable memory suppression. However, most TNT studies have been limited to the visual domain. To assess whether and to what extent direct memory suppression extends across sensory modalities, we examined behavioral and electroencephalographic (EEG) effects of auditory TNT in healthy young adults by adapting the TNT paradigm to the auditory modality. Behaviorally, suppression of memory strength was indexed by prolonged response time (RTs) during the retrieval of subsequently remembered No-Think words. We examined task-related EEG activity of both attempted memory retrieval and inhibition of a previously learned target word during the presentation of its paired associate. Event-related EEG responses revealed two main findings: (1) a centralized Think > No-Think positivity during auditory word presentation (from approximately 0–500 ms); and (2) a sustained Think positivity over parietal electrodes beginning at approximately 600 ms reflecting the memory retrieval effect which was significantly reduced for No-Think words. In addition, word-locked theta (4–8 Hz) power was initially greater for No-Think compared to Think during auditory word presentation over fronto-central electrodes. This was followed by a posterior theta increase indexing successful memory retrieval in the Think condition. The observed event-related potential pattern and theta power analysis are similar to that reported in visual TNT studies and support a modality non-specific mechanism for memory inhibition. The EEG data also provide evidence supporting differing roles and time courses of frontal and parietal regions in the flexible control of auditory memory.




AUTHORS

  • Maya Cano

  • Robert T. Knight

Date: 2016

DOI: 10.3389/fnhum.2016.00133

View PDF


Sustained attention and prediction: distinct brain maturation trajectories during adolescence

ABSTRACT

Adolescence is a key period for frontal cortex maturation necessary for the development of cognitive ability. Sustained attention and prediction are cognitive functions critical for optimizing sensory processing, and essential to efficiently adapt behaviors in an ever-changing world. The aim of the current study was to investigate the brain developmental trajectories of attentive and predictive processing through adolescence. We recorded EEG in 36 participants from the age of 12–24 years (three age groups: 12–14, 14–17, 18–24 years) to target development during early and late adolescence, and early adulthood. We chose a visual target detection task which loaded upon sustained attention, and we manipulated target predictability. Continued maturation of sustained attention after age 12 was evidenced by improved performance (hits, false alarms (FAs) and sensitivity) in a detection task, associated with a frontal shift in the scalp topographies of the Contingent Negative Variation (CNV) and P3 responses, with increasing age. No effect of age was observed on predictive processing, with all ages showing similar benefits in reaction time, increases in P3 amplitude (indexing predictive value encoding and memorization), increases in CNV amplitude (corresponding to prediction implementation) and reduction in target-P3 latency (reflecting successful prediction building and use), with increased predictive content. This suggests that adolescents extracted and used predictive information to generate predictions as well as adults. The present results show that predictive and attentive processing follow distinct brain developmental trajectories: prediction abilities seem mature by the age of 12 and sustained attention continues to improve after 12-years of age and is associated with maturational changes in the frontal cortices.




AUTHORS

  • Alix Thillay

  • S. Roux

  • Valerie Gissot

  • Isabelle Carteau-Martin

  • Robert T. Knight

  • Frederique Bonnet-Brilhault

  • Aurélie Bidet-Caulet

Date: 2015

DOI: 10.3389/fnhum.2015.00519, 2015

View PDF


Age-Related Changes in 1/f Neural Electrophysiological Noise

ABSTRACT

Aging is associated with performance decrements across multiple cognitive domains. The neural noise hypothesis, a dominant view of the basis of this decline, posits that aging is accompanied by an increase in spontaneous, noisy baseline neural activity. Here we analyze data from two different groups of human subjects: intracranial electrocorticography from 15 participants over a 38 year age range (15–53 years) and scalp EEG data from healthy younger (20 –30 years) and older (60 –70 years) adults to test the neural noise hypothesis from a 1/f noise perspective. Many natural phenomena, including electrophysiology, are characterized by 1/f noise. The defining characteristic of 1/f is that the power of the signal frequency content decreases rapidly as a function of the frequency ( f ) itself. The slope of this decay, the noise exponent (), is often1 for electrophysiological data and has been shown to approach white noise (defined as  0) with increasing task difficulty.Weobserved, in both electrophysiological datasets, that aging is associated with a flatter (more noisy) 1/f power spectral density, even at rest, and that visual cortical 1/f noise statistically mediates age-related impairments in visual working memory. These results provide electrophysiological support for the neural noise hypothesis of aging.





AUTHORS

  • Bradley Voytek

  • Mark A. Kramer

  • John Case

  • Kyle Q. Lepage

  • Zachary Tempesta

  • Robert T. Knight

  • Adam Gazzaley

Date: 2015

DOI: 10.1523/JNEUROSCI.2332-14.2015

View PDF


Contribution of Human Prefrontal Cortex to Delay Performance

ABSTRACT

According to the competition account of lexical selection in word production, conceptually driven word retrieval involves the activation of a set of candidate words in left temporal cortex and competitive selection of the intended word from this set, regulated by frontal cortical mechanisms. However, the relative contribution of these brain regions to competitive lexical selection is uncertain. In the present study, five patients with left prefrontal cortex lesions (overlapping in ventral and dorsal lateral cortex), eight patients with left lateral temporal cortex lesions (overlapping in middle temporal gyrus), and 13 matched controls performed a picture-word interference task. Distractor words were semantically related or unrelated to the picture, or the name of the picture (congruent condition). Semantic interference (related vs. unrelated), tapping into competitive lexical selection, was examined. An overall semantic interference effect was observed for the control and left-temporal groups separately. The left-frontal patients did not show a reliable semantic interference effect as a group. The left-temporal patients had increased semantic interference in the error rates relative to controls. Error distribution analyses indicated that these patients had more hesitant responses for the related than for the unrelated condition. We propose that left middle temporal lesions affect the lexical activation component, making lexical selection more susceptible to errors.





AUTHORS

  • Linda L. Chao

  • Robert T. Knight

Date: 1998

DOI: 10.1162/089892998562636 

View PDF


Susceptibility to memory interference effects following frontal lobe damage: findings from tests of paired-associate learning.

Authors:

  • Arthur P. Shimamura

  • Paul J. Jurica

  • Jennifer A. Mangels

  • Felicia B. Gershberg

  • Robert T. Knight

Date: 1995

View PDF

Abstract:

Patients with frontal lobe lesions were administered tests of paired-associate learning in which cue and response words are manipulated to increase interference across two study lists. In one test of paired-associate learning (AB-AC test), cue words used in one list are repeated in a second list but are associated with different response words (e.g., LION-HUNTER, LION-CIRCUS). In another test (AB-ABr test), words used in one list are repeated in a second list but are rearranged to form new pairs. Compared to control subjects, patients with frontal lobe lesions exhibited disproportionate impairment of second-list learning as a result of interference effects. In particular, patients exhibited the poorest performance during the initial trial of the second list, a trial in which interference effects from the first list would be most apparent. These findings suggest that the on-line control of irrelevant or competing memory associations is disrupted following frontal lobe lesions. This disruption may be indicative of an impaired gating or filtering mechanism that affects not only memory function but other cognitive function as well.