Sara Szczepanski

Differential Sources for 2 Neural Signatures of Target Detection: An Electrocorticography Study

ABSTRACT

Electrophysiology and neuroimaging provide conflicting evidence for the neural contributions to target detection. Scalp electroencephalography (EEG) studies localize the P3b event-related potential component mainly to parietal cortex, whereas neuroimaging studies report activations in both frontal and parietal cortices. We addressed this discrepancy by examining the sources that generate the target-detection process using electrocorticography (ECoG). We recorded ECoG activity from cortex in 14 patients undergoing epilepsy monitoring, as they performed an auditory or visual target-detection task. We examined target-related responses in 2 domains: high frequency band (HFB) activity and the P3b. Across tasks, we observed a greater proportion of electrodes that showed target-specific HFB power relative to P3b over frontal cortex, but their proportions over parietal cortex were comparable. Notably, there was minimal overlap in the electrodes that showed target-specific HFB and P3b activity. These results revealed that the target-detection process is characterized by at least 2 different neural markers with distinct cortical distributions. Our findings suggest that separate neural mechanisms are driving the differential patterns of activity observed in scalp EEG and neuroimaging studies, with the P3b reflecting EEG findings and HFB activity reflecting neuroimaging findings, highlighting the notion that target detection is not a unitary phenomenon.





AUTHORS

  • Julia W. Y. Kam

  • Sara Szczepanski

  • Ryan T. Canolty

  • Adeen Flinker

  • Kurtis I. Auguste

  • Nathan E. Crone

  • Heidi E. Kirsch

  • Rachel A. Kuperman

  • Jack J. Lin

  • Josef Parvizi

  • Robert T. Knight

Date: 2016

DOI: 10.1093/cercor/bhw343

View PDF


Insights into human behavior from lesions to prefrontal cortex


Authors:

  • Sara Szczepanski

  • Robert T. Knight

Date: 2014

DOI: 10.1016/j.neuron.2014.08.011

View PDF

Abstract:

The prefrontal cortex (PFC), a cortical region that was once thought to be functionally insignificant, is now known to play an essential role in the organization and control of goal-directed thought and behavior. Neuroimaging, neurophysiological, and modeling techniques have led to tremendous advances in our understanding of PFC functions over the last few decades. It should be noted, however, that neurological, neuropathological, and neuropsychological studies have contributed some of the most essential, historical, and often prescient conclusions regarding the functions of this region. Importantly, examination of patients with brain damage allows one to draw conclusions about whether a brain area is necessary for a particular function. Here, we provide a broad overview of PFC functions based on behavioral and neural changes resulting from damage to PFC in both human patients and nonhuman primates.

Dynamic changes in phase-amplitude coupling facilitate spatial attention control in fronto-parietal cortex

Authors:

  • Sara Szczepanski

  • Nathan E. Crone

  • Rachel A. Kuperman

  • Kurtis I. Auguste

  • Josef Parvizi

  • Robert T. Knight

Date: 2014

DOI: 10.1371/journal.pbio.1001936

PubMed: 4144794

View PDF

Abstract:

Attention is a core cognitive mechanism that allows the brain to allocate limited resources depending on current task demands. A number of frontal and posterior parietal cortical areas, referred to collectively as the fronto-parietal attentional control network, are engaged during attentional allocation in both humans and non-human primates. Numerous studies have examined this network in the human brain using various neuroimaging and scalp electrophysiological techniques. However, little is known about how these frontal and parietal areas interact dynamically to produce behavior on a fine temporal (sub-second) and spatial (sub-centimeter) scale. We addressed how human fronto-parietal regions control visuospatial attention on a fine spatiotemporal scale by recording electrocorticography (ECoG) signals measured directly from subdural electrode arrays that were implanted in patients undergoing intracranial monitoring for localization of epileptic foci. Subjects (n=8) performed a spatial-cuing task, in which they allocated visuospatial attention to either the right or left visual field and detected the appearance of a target. We found increases in high gamma (HG) power (70–250 Hz) time-locked to trial onset that remained elevated throughout the attentional allocation period over frontal, parietal, and visual areas. These HG power increases were modulated by the phase of the ongoing delta/theta (2–5 Hz) oscillation during attentional allocation. Critically, we found that the strength of this delta/theta phase-HG amplitude coupling predicted reaction times to detected targets on a trial-by-trial basis. These results highlight the role of delta/theta phase-HG amplitude coupling as a mechanism for sub-second facilitation and coordination within human fronto-parietal cortex that is guided by momentary attentional demands.