Vitoria Piai

Lesion evidence for a critical role of left posterior but not frontal areas in alpha–beta power decreases during context-driven word production

ABSTRACT

Different frequency bands in the electroencephalogram are postulated to support distinct language functions. Studies have suggested that alpha-beta power decreases may index word-retrieval processes. In context-driven word retrieval, participants hear lead-in sentences that either constrain the final word ('He locked the door with the') or not ('She walked in here with the'). The last word is shown as a picture to be named. Previous studies have consistently found alpha-beta power decreases prior to picture onset for constrained relative to unconstrained sentences, localised to the left lateral-temporal and lateral-frontal lobes. However, the relative contribution of temporal versus frontal areas to alpha-beta power decreases is unknown. We recorded the electroencephalogram from patients with stroke lesions encompassing the left lateral-temporal and inferior-parietal regions or left-lateral frontal lobe and from matched controls. Individual participant analyses revealed a behavioural sentence context facilitation effect in all participants, except for in the two patients with extensive lesions to temporal and inferior parietal lobes. We replicated the alpha-beta power decreases prior to picture onset in all participants, except for in the two same patients with extensive posterior lesions. Thus, whereas posterior lesions eliminated the behavioural and oscillatory context effect, frontal lesions did not. Hierarchical clustering analyses of all patients' lesion profiles, and behavioural and electrophysiological effects identified those two patients as having a unique combination of lesion distribution and context effects. These results indicate a critical role for the left lateral-temporal and inferior parietal lobes, but not frontal cortex, in generating the alpha-beta power decreases underlying context-driven word production.






AUTHORS

  • Vitoria Piai

  • Joost Rommers

  • Robert T. Knight

Date: 2017

DOI: 10.1111/ejn.13695

View PDF


Human hippocampal pre-activation predicts behavior

ABSTRACT

The response to an upcoming salient event is accelerated when the event is expected given the preceding events – i.e. a temporal context effect. For example, naming a picture following a strongly constraining temporal context is faster than naming a picture after a weakly constraining temporal context. We used sentences as naturalistic stimuli to manipulate expectations on upcoming pictures without prior training. Here, using intracranial recordings from the human hippocampus we found more power in the high-frequency band prior to high-expected pictures than weakly expected ones. We applied pattern similarity analysis on the temporal pattern of hippocampal high-frequency band activity in single hippocampal contacts. We found that greater similarity in the pattern of hippocampal field potentials between pre-picture interval and expected picture interval in the high-frequency band predicted picture-naming latencies. Additional pattern similarity analysis indicated that the hippocampal representations follow a semantic map. The results suggest that hippocampal pre- activation of expected stimuli is a facilitating mechanism underlying the powerful contextual behavioral effect.

AUTHORS

  • Robert T. Knight

  • Anna Jafarpour

  • Vitoria Piai

  • Jack J. Lin

Date: 2017

DOI: 10.1038/s41598-017-06477-5

View PDF


Neuroplasticity of language in left-hemisphere stroke: evidence linking subsecond electrophysiology and structural connections

ABSTRACT

The understanding of neuroplasticity following stroke is predominantly based on neuroimaging measures that cannot address the subsecond neurodynamics of impaired language processing. We combined behavioral and electrophysiological measures and structural-connectivity estimates to characterize neuroplasticity underlying successful compensation of language abilities after left-hemispheric stroke. We recorded the electroencephalogram from patients with stroke lesions to the left temporal lobe and from matched controls during context-driven word retrieval. Participants heard lead-in sentences that either constrained the final word (“He locked the door with the”) or not (“She walked in here with the”). The last word was shown as a picture to be named. Individual-participant analyses were conducted, focusing on oscillatory power as a subsecond indicator of a brain region’s functional neurophysiological computations. All participants named pictures faster following constrained than unconstrained sentences, except for two patients, who had extensive damage to the left temporal lobe. Left-lateralized alpha–beta oscillatory power decreased in controls pre-picture presentation for constrained relative to unconstrained contexts. In patients, the alpha–beta power decreases were observed with the same time course as in controls but were lateralized to the intact right hemisphere. The right lateralization depended on the probability of white-matter connections between the bilateral temporal lobes. The two patients who performed poorly behaviorally showed no alpha–beta power decreases. Our findings suggest that incorporating direct measures of neural activity into investigations of neuroplasticity can provide important neural markers to help predict language recovery, assess the progress of neurorehabilitation, and delineate targets for therapeutic neuromodulation.



AUTHORS

  • Vitoria Piai

  • Lars Meyer

  • Nina F. Dronkers

  • Robert T. Knight

Date: 2017

DOI: 10.1002/hbm.23581

View PDF


Direct brain recordings reveal hippocampal rhythm underpinnings of language processing

ABSTRACT

Language is classically thought to be supported by perisylvian cortical regions. Here we provide intracranial evidence linking the hippocampal complex to linguistic processing. We used direct recordings from the hippocampal structures to investigate whether theta oscillations, pivotal in memory function, track the amount of contextual linguistic information provided in sentences. Twelve participants heard sentences that were either constrained (“She locked the door with the”) or unconstrained (“She walked in here with the”) before presentation of the final word (“key”), shown as a picture that participants had to name. Hippocampal theta power increased for constrained relative to unconstrained contexts during sentence processing, preceding picture presentation. Our study implicates hippocampal theta oscillations in a language task using natural language associations that do not require memorization. These findings reveal that the hippocampal complex contributes to language in an active fashion, relating incoming words to stored semantic knowledge, a necessary process in the generation of sentence meaning.


AUTHORS

  • Vitoria Piai

  • Kristopher L. Anderson

  • Jack J. Lin

  • Callum Dewar

  • Josef Parvizi

  • Nina F. Dronkers

  • Robert T. Knight

Date: 2016

DOI: www.pnas.org/cgi/doi/10.1073/pnas.1603312113

View PDF


The electrophysiology of language production: what could be improved

Authors:

  • Vitoria Piai

  • Stephanie Ries

  • Robert T. Knight

Date: 2015

DOI: 10.3389/fpsyg.2014.01560

View PDF

Abstract:

Recently, the field of spoken-word production has seen an increasing interest in the use of the electroencephalogram (EEG), mainly for event-related potentials (ERPs). These are exciting times to be a language production researcher. However, no matter how much we would like our results to speak to our theories, they can only do so if our methods are formally correct and valid, and reported in ways that allow replicability. Inappropriate practices in signal processing and statistical testing, when applied to our investigations, may render our conclusions invalid or non-generalizable. Here, we first present some issues in signal processing and statistical testing that we think deserve more attention when analysing data, reporting results, and making inferences. These issues are not new to electrophysiology, so our sole contribution is to reiterate them in order to provide pointers to literature where they have been discussed in more detail and solutions have been proposed. We then discuss other issues pertinent to our investigations of overt word-production because of the effects (and potential confounds) that speaking will have on the signal. Although we cannot provide answers to some of the issues raised, we invite researchers in the field to jointly work on solutions so that the topic of the electrophysiology of word production can thrive on solid grounds.