Clay Clayworth

Lack of age effects on human brain potentials preceding voluntary movements

Authors:

  • Jaswinder Singh

  • Robert T. Knight

  • David L. Woods

  • Dennis J. Beckley

  • Clay Clayworth

Date: 1990

PubMed: 2097580

View PDF

Abstract:

We examined age effects on Movement related potentials (MRPs) in 13 young (mean age = 29.3 years) and 13 old (mean age = 67.2 years) normal adults in right, left and bimanual self-paced button press conditions. Both the groups generated a slowly rising readiness potential (RP) at about 1000 ms, a negative shift (NS') at about 450 ms and a motor potential (MP) at about 100 ms prior to movement. The RP was symmetrical, bilaterally distributed and maximal at the vertex in all conditions in both the groups. Both the groups produced contralateraUy enhanced NS' and MP compo- nents in unimanual conditions. In contrast to prior reports, topographical distribution, onset latency and mean amplitude were comparable between young and old subjects for the RP, NS' and MP components of the MRP. The results indicate that motor programming as indexed by MRPs is unaffected by normal aging.

Contributions of temporal-parietal junction to the human auditory P3

Authors:

  • Robert T. Knight

  • David L. Woods

  • Clay Clayworth

Date: 1989

PubMed: 2819449

View PDF

Abstract:

The P3 component of the event-related potential (ERP) is generated in humans and other mammalian species when attention is drawn to infrequent stimuli. We assessed the role of subregions of human posterior association cortex in auditory P3 generation in groups of patients with focal cortical lesions. Auditory P3s were recorded to target (P3b) and unexpected novel stimuli (P3a) in monaural and dichotic signal detection experiments. Two groups of patients were studied with lesions of: (1) temporal-parietal junction including posterior superior temporal plane and adjacent caudal inferior parietal cortex; and (2) the lateral parietal lobe including the rostral inferior parietal lobe and portions of superior parietal lobe. Extensive lateral parietal cortex lesions had no effect on the P3. In contrast, discrete unilateral lesions centered in the posterior superior temporal plane eliminated both the auditory P3b and P3a at electrodes over the posterior scalp. The results indicate that auditory association cortex in the human temporal-parietal junction is critical for auditory P3 generation.

The effects of lesions of superior temporal gyrus and inferior parietal lobe on temporal and vertex components of the human AEP.

Authors:

  • Robert T. Knight

  • David L. Woods

  • Clay Clayworth

Date: 1988

PubMed: 2461284

View PDF

Abstract:

We recorded auditory evoked potentials (AEPs) to 1 kHz tone bursts in controls and patients with unilateral lesions centered in posterior superior temporal gyrus and adjacent caudal inferior parietal lobule (STG) or in rostral inferior parietal lobule (IPL). Controls generated a vertex maximal N94 (N1b) and P200 (P2) and additional P45, N78 and N127 temporal AEP components (P45, N1a, N1c). Similar to prior reports, in controls the N1a was most prominent over the left temporal lobe and the P45 was largest over the right temporal lobe consistent with behavioral and anatomical data indicating differential organization of left and right human temporal lobe. The N1c was recorded equally from both T3 and T4 electrodes and was enhanced in the temporal site contralateral to the ear of stimulation. The patient groups had differential effects on AEPs. Unilateral STG lesions resulted in bilateral reductions of the N1b and P45 and marked unilateral reductions of the N1a and N1c over lesioned hemisphere. IPL lesions resulted in bilateral but non-significant reductions of the N1b and N1c. The scalp topography results in normal subjects combined with the effects of unilateral STG lesions provide supportive evidence that the temporal maximal components of the human AEP (P45, N1a, N1c) are generated by radially oriented neuronal dipole sources located in STG. The bilateral reduction of the N1b vertex response by unilateral STG lesions is compatible with a unilateral disruption of a vertically oriented dipole situated in the posterior superior temporal plane. The results emphasize the critical role of the superior temporal plane and lateral superior temporal gyrus in generation of human long latency AEPs.


Generators of middle- and long-latency auditory evoked potentials: implications from studies of patients with bitemporal lesions


Authors:

  • David L. Woods

  • Clay Clayworth

  • Robert T. Knight

  • Gregory V. Simpson

  • Margaret A. Naeser

Date: 1987

PubMed: 2435529

View PDF


Abstract:

We recorded middle- and long-latency auditory evoked potentials (AEPs) in 5 patients (ages 39-72 years) with bilateral lesions of the superior temporal plane. Reconstructions of CT sections revealed that primary auditory cortex had been damaged bilaterally in four of the patients, while in the fifth an extensive left hemisphere lesion included primary auditory cortex while a right hemisphere lesion had damaged anterior auditory association areas but spared primary auditory cortex. Normal middle-latency AEPs (MAEPs) were recorded at the vertex electrode in all of the patients. In 3 of the 5 patients, MAEPs also showed normal coronal scalp distributions and were comparable in amplitude following stimulation of either ear. Two patients showed abnormalities. In one case, Na (latency 17 msec)-Pa (latency 30 msec) amplitudes were reduced over both hemispheres following stimulation of the ear contralateral to the more extensive lesion. In another, with both subcortical and cortical involvement, the Pa was abolished over the hemisphere with the more extensive lesion. Long-latency AEPs were normal in 2 patients whose lesions were largely confined to the superior temporal plane. In 2 patients with lesions extending into the inferior parietal lobe, N1s were abolished bilaterally. In the fifth patient, the N1 showed a slight reduction over the hemisphere with the more extensive lesion. Middle- and long-latency AEPs were differentially affected by some lesions. For example, patients with absent N1s could produce normal Pas. A review of these results and those of previous studies of bitemporal patients suggests that abnormalities in middle- and long-latency AEPs do not necessarily reflect damage to primary auditory cortex per se, but rather the degree of damage to adjacent areas. Abnormalities in MAEPs are associated with subcortical lesions, or cortical lesions extensive enough to denervate thalamic projection nuclei. Abnormalities in the long-latency N1 reflect lesion extension into the multi-modal areas of the inferior parietal lobule. This area appears to exert a critical modulatory influence over N1 generators outside of the superior temporal plane.