Abstract:
This paper describes the design, fabrication and testing of a prototype dry surface electrode for EEG signal recording. The new dry electrode has the advantages of no need for skin preparation or conductive paste, potential for reduced sensitivity to motion artifacts and an enhanced signal-to-noise ratio. The electrode's sensing element is a 3 mm stainless steel disk which has a 2000 A (200 nm) thick nitride coating deposited onto one side. The back side of the disk is attached to an impedance converting amplifier. The prototype electrode was mounted on a copper plate attached to the scalp by a Velcro strap. The performance of this prototype dry electrode was compared to commercially available wet electrodes in 3 areas of electroencephalogram (EEG) recording: (1) spontaneous EEG, (2) sensory evoked potentials, and (3) cognitive evoked potentials. In addition to the raw EEG, the power spectra of the signals from both types of electrodes were also recorded. The results suggest that the dry electrode performs comparably to conventional electrodes for all types of EEG signal analysis. This new electrode may be useful for the production of high resolution surface maps of brain activity where a large number of electrodes or prolonged recording times are required.