eLife

An electrophysiological marker of arousal level in humans

Abstract:

Deep non-rapid eye movement sleep (NREM) and general anesthesia with propofol are prominent states of reduced arousal linked to the occurrence of synchronized oscillations in the electroencephalogram (EEG). Although rapid eye movement (REM) sleep is also associated with diminished arousal levels, it is characterized by a desynchronized, ‘wake-like’ EEG. This observation implies that reduced arousal states are not necessarily only defined by synchronous oscillatory activity. Using intracranial and surface EEG recordings in four independent data sets, we demonstrate that the 1/f spectral slope of the electrophysiological power spectrum, which reflects the non-oscillatory, scale-free component of neural activity, delineates wakefulness from propofol anesthesia, NREM and REM sleep. Critically, the spectral slope discriminates wakefulness from REM sleep solely based on the neurophysiological brain state. Taken together, our findings describe a common electrophysiological marker that tracks states of reduced arousal, including different sleep stages as well as anesthesia in humans.

Authors:

  • Janna D Lendner

  • Randolph F Helfrich

  • Bryce A Mander

  • Luis Romundstad

  • Jack J Lin

  • Matthew P Walker

  • Pal G Larsson

  • Robert T Knight

Date: 2020

DOI: https://doi.org/10.7554/eLife.55092

View PDF


Electrocorticographic dissociation of alpha and beta rhythmic activity in the human sensorimotor system

Abstract:

This study uses electrocorticography in humans to assess how alpha- and beta-band rhythms modulate excitability of the sensorimotor cortex during psychophysically-controlled movement imagery. Both rhythms displayed effector-specific modulations, tracked spectral markers of action potentials in the local neuronal population, and showed spatially systematic phase relationships (traveling waves). Yet, alpha- and beta-band rhythms differed in their anatomical and functional properties, were weakly correlated, and traveled along opposite directions across the sensorimotor cortex. Increased alpha-band power in the somatosensory cortex ipsilateral to the selected arm was associated with spatially-unspecific inhibition. Decreased beta-band power over contralateral motor cortex was associated with a focal shift from relative inhibition to excitation. These observations indicate the relevance of both inhibition and disinhibition mechanisms for precise spatiotemporal coordination of movement-related neuronal populations, and illustrate how those mechanisms are implemented through the substantially different neurophysiological properties of sensorimotor alpha- and beta-band rhythms.

Authors:

  • Arjen Stolk

  • Loek Brinkman

  • Mariska J Vansteensel

  • Erik Aarnoutse

  • Frans SS Leijten

  • Chris H Dijkerman

  • Robert T Knight

  • Floris P de Lange

  • Ivan Toni

Date: 2019

DOI: https://doi.org/10.7554/eLife.48065

View PDF