Lavi Secundo

Hemicraniectomy: A New Model for Human Electrophysiology with High Spatio-temporal Resolution

Authors:

  • Bradley Voytek

  • Lavi Secundo

  • Aurélie Bidet-Caulet

  • Shirley I. Stiver

  • Alisa D. Gean

  • Geoffrey T. Manley

  • Robert T. Knight

Date: 2010

DOI: 10.1162/jocn.2009.21384

PubMed: 19925193

View PDF

Abstract:

Human electrophysiological research is generally restricted to scalp EEG, magneto-encephalography, and intracranial electrophysiology. Here we examine a unique patient cohort that has undergone decompressive hemicraniectomy, a surgical procedure wherein a portion of the calvaria is removed for several months during which time the scalp overlies the brain without intervening bone. We quantify the differences in signals between electrodes over areas with no underlying skull and scalp EEG electrodes over the intact skull in the same subjects. Signals over the hemicraniectomy have enhanced amplitude and greater task-related power at higher frequencies (60–115 Hz) compared with signals over skull. We also provide evidence of a metric for trial-by-trial EMG/EEG coupling that is effective over the hemicraniectomy but not intact skull at frequencies >60 Hz. Taken together, these results provide evidence that the hemicraniectomy model provides a means for studying neural dynamics in humans with enhanced spatial and temporal resolution.

Cortical representation of ipsilateral arm movements in monkey and man

Authors:

  • Karunesh Ganguly

  • Lavi Secundo

  • Gireeja Ranade

  • Amy Orsborn

  • Edward F. Chang

  • Dragan F. Dimitrov

  • Johnathan D. Wallis

  • Nicholas M. Barbaro

  • Robert T. Knight

  • Jose M. Carmena

Date: 2009

DOI: 10.1523/JNEUROSCI.2471-09.2009

PubMed: 19828809

View PDF

Abstract:

A fundamental organizational principle of the primate motor system is cortical control of contralateral limb movements. Motor areas also appear to play a role in the control of ipsilateral limb movements. Several studies in monkeys have shown that individual neurons in primary motor cortex (M1) may represent, on average, the direction of movements of the ipsilateral arm. Given the increasing body of evidence demonstrating that neural ensembles can reliably represent information with a high temporal resolution, here we characterize the distributed neural representation of ipsilateral upper limb kinematics in both monkey and man. In two macaque monkeys trained to perform center-outreaching movements, we found thatthe ensemble spiking activity in M1 could continuously representipsilateral limb position. Interestingly, this representation was more correlated with joint angles than hand position. Using bilateral electromyography recordings, we excluded the possibility that postural or mirror movements could exclusively account for these findings. In addition, linear methods could decode limb position from cortical field potentials in both monkeys. We also found that M1 spiking activity could control a biomimetic brain–machine interface reflecting ipsilateral kinematics. Finally, we recorded cortical field potentials from three human subjects and also consistently found evidence of a neural representation for ipsilateral movement parameters. Together, our results demonstrate the presence of a high-fidelity neural representation for ipsilateral movement and illustrates that it can be successfully incorporated into a brain–machine interface.