Jose M. Carmena

Detecting event-related changes of multivariate phase coupling in dynamic brain networks

Authors:

  • Ryan T. Canolty

  • Charles F. Cadieu

  • Kilian Koepsell

  • Karunesh Ganguly

  • Robert T. Knight

  • Jose M. Carmena

Date: 2012

PubMed: 22236706

View PDF

Abstract:

Oscillatory phase coupling within large-scale brain networks is a topic of increasing interest within systems, cognitive, and theoretical neuroscience. Evidence shows that brain rhythms play a role in controlling neuronal excitability and response modulation, and regulate the efficacy of communication between cortical regions and distinct spatiotemporal scales. In this view, anatomically-connected brain areas form the scaffolding upon which neuronal oscillations rapidly create and dissolve transient functional networks. Importantly, testing these hypotheses requires methods designed to accurately reflect dynamic changes in multivariate phase coupling within brain networks. Unfortunately, phase coupling between neurophysiological signals is commonly investigated using suboptimal techniques. Here we describe how a recently-developed probabilistic model - Phase Coupling Estimation (PCE; Cadieu and Koepsell, 2010) - can be used to investigate changes in multivariate phase coupling, and we detail the advantages of this model over the commonly-employed phase-locking value (PLV). We show that the N-dimensional PCE is a natural generalization of the inherently bivariate PLV. Using simulations we show that PCE accurately captures both direct and indirect (network mediated) coupling between network elements in situations where PLV produces erroneous results. We present empirical results on recordings from humans and non-human primates and show that the PCE-estimated coupling values are different from those using the bivariate PLV. Critically on these empirical recordings, PCE output tends to be sparser than the PLVs, indicating fewer significant interactions and perhaps a more parsimonious description of the data. Finally, the physical interpretation of PCE parameters is straightforward: the PCE parameters correspond to interaction terms in a network of coupled oscillators. Forward modeling of a network of coupled oscillators with parameters estimated by PCE generates synthetic data with statistical characteristics identical to empirical signals. Given these advantages over the PLV, PCE is a useful tool for investigating multivariate phase coupling in distributed brain networks.

Multivariate Phase–Amplitude Cross-Frequency Coupling in Neurophysiological Signals

Authors:

  • Ryan T. Canolty

  • Charles F. Cadieu

  • Kilian Koepsell

  • Robert T. Knight

  • Jose M. Carmena

Date: 2012

PubMed: 22020662

View PDF

Abstract:

Phase-amplitude cross-frequency coupling (CFC)-where the phase of a low-frequency signal modulates the amplitude or power of a high-frequency signal-is a topic of increasing interest in neuroscience. However, existing methods of assessing CFC are inherently bivariate and cannot estimate CFC between more than two signals at a time. Given the increase in multielectrode recordings, this is a strong limitation. Furthermore, the phase coupling between multiple low-frequency signals is likely to produce a high rate of false positives when CFC is evaluated using bivariate methods. Here, we present a novel method for estimating the statistical dependence between one high-frequency signal and N low-frequency signals, termed multivariate phase-coupling estimation (PCE). Compared to bivariate methods, the PCE produces sparser estimates of CFC and can distinguish between direct and indirect coupling between neurophysiological signals-critical for accurately estimating coupling within multiscale brain networks.

Cortical representation of ipsilateral arm movements in monkey and man

Authors:

  • Karunesh Ganguly

  • Lavi Secundo

  • Gireeja Ranade

  • Amy Orsborn

  • Edward F. Chang

  • Dragan F. Dimitrov

  • Johnathan D. Wallis

  • Nicholas M. Barbaro

  • Robert T. Knight

  • Jose M. Carmena

Date: 2009

DOI: 10.1523/JNEUROSCI.2471-09.2009

PubMed: 19828809

View PDF

Abstract:

A fundamental organizational principle of the primate motor system is cortical control of contralateral limb movements. Motor areas also appear to play a role in the control of ipsilateral limb movements. Several studies in monkeys have shown that individual neurons in primary motor cortex (M1) may represent, on average, the direction of movements of the ipsilateral arm. Given the increasing body of evidence demonstrating that neural ensembles can reliably represent information with a high temporal resolution, here we characterize the distributed neural representation of ipsilateral upper limb kinematics in both monkey and man. In two macaque monkeys trained to perform center-outreaching movements, we found thatthe ensemble spiking activity in M1 could continuously representipsilateral limb position. Interestingly, this representation was more correlated with joint angles than hand position. Using bilateral electromyography recordings, we excluded the possibility that postural or mirror movements could exclusively account for these findings. In addition, linear methods could decode limb position from cortical field potentials in both monkeys. We also found that M1 spiking activity could control a biomimetic brain–machine interface reflecting ipsilateral kinematics. Finally, we recorded cortical field potentials from three human subjects and also consistently found evidence of a neural representation for ipsilateral movement parameters. Together, our results demonstrate the presence of a high-fidelity neural representation for ipsilateral movement and illustrates that it can be successfully incorporated into a brain–machine interface.