Brain Research

Phenytoin Increases the Severity of Cortical Hemiplegia in Rats


Authors:

  • Simon Brailowsky

  • Robert T. Knight

  • Robert Efron

Date: 1986

PubMed: 3719374

View PDF


Abstract:

The effects of systemic phenytoin administration on the motor deficit resulting from a cortical lesion were studied in rats trained to walk coordinately on a narrow beam. The somatomotor cortex lesion was produced by an indwelling cannula through which saline or GABA were infused chronically via an osmotic minipump. Phenytoin (50 mg/kg i.p.) administered between days 3 and 5 after the intracortical catheter implantation produced a significant increase in the severity of the resulting hemiplegic syndrome. This DPH effect was more noticeable in those animals also receiving intracortical GABA infusions. The anticonvulsant at the dose used had no effect on motor performance when administered preoperatively or when given to the animals 14 days after surgical intervention when their hemiplegic syndrome had cleared. These findings suggest that phenytoin administration to brain-damaged individuals in the initial postlesion stage may be deleterious.






Gamma-Aminobutyric Acid-Induced Potentiation of Cortical Hemiplegia


Authors:

  • Simon Brailowsky

  • Robert T. Knight

  • Katherine Blood

  • Donatella Scabini

Date: 1986

PubMed: 3942881

View PDF


Abstract:

A novel model of hemiplegia in young and aged rats is described. Osmotic minipumps were used to deliver a chronic (7 days), localized application of gamma-aminobutyric acid (GABA) (100 micrograms/microliter/h), to the somatomotor cortex of unrestrained rats. This resulted in an easily quantifiable, contralateral and reversible motor syndrome in both young and aged animals. In the young group, the motor deficit cleared over 5-day period, while in the aged animals it persisted for at least a 2-week period. Control animals treated with saline-filled minipumps did not develop a long-lasting motor deficit. The GABA-induced facilitation of hemiplegia due to small motor cortex lesions and the age effects on behavioral recovery of function are discussed. Cortical inhibitory mechanisms may play a role in debilitating syndromes such as stroke or post-epileptic paralysis.





Altered Peripheral and Brainstem Auditory Function in Aged Rats

Authors:

  • Gregory V. Simpson

  • Robert T. Knight

  • Simon Brailowsky

  • Oscar Prospero-Garcia

Date: 1985

PubMed: 4063825

View PDF

Abstract:

A technique for conducting free-field brainstem auditory evoked potential (BAEP) audiometry in unanesthetized, unrestrained rats revealed a non-recruiting 18 dB elevation of click threshold in aged rats. BAEPs were first recorded in young and aged rats to clicks of equal intensity (80 dB SPL). Compared to the young group, aged animals exhibited longer wave I and wave IV latencies with no difference seen in the I-IV central conduction time. The prominent negative wave (No) following wave IV was also delayed and the I-No and IV-No conduction times increased in the aged group. When BAEPs were recorded to clicks with intensities adjusted to 35 dB above individual threshold, no differences in wave I or wave IV latencies or in the I-IV central conduction time were found between groups. However, the No component was delayed and the I-No and IV-No conduction times remained prolonged in the aged group. The results suggest that in addition to changes in peripheral auditory structures, changes in the rostral auditory brainstem accompany age-related hearing loss in rats.


Inhibitory modulation of cat somatosensory cortex: a pharmacological study

Abstract:

In anesthetized preparations, GABA and taurine produced rapid, reversible inhibition of the negative component (N20) of the primary somatosensory evoked potential (SEP) without effect on the earlier positivity (P11). This effect was also produced by low doses of 4-aminopyridine. Neither bicuculline or picrotoxin antagonized these drug effects. A predominance of type B GABA receptors in the superficial layers of the somatosensory cortex is proposed.




Authors:

  • Simon Brailowsky

  • Robert T. Knight

Date: 1984

PubMed: 6509318

View PDF