Authors:
Adam Gazzaley
Wesley Clapp
Jon Kelley
Kevin McEvoy
Robert T. Knight
Mark D'Esposito
Date: 2008
DOI: 10.1073/pnas.0806074105
PubMed: 18765818
Abstract:
In this study, electroencephalography (EEG) was used to examine the relationship between two leading hypotheses of cognitive aging, the inhibitory deficit and the processing speed hypothesis. We show that older adults exhibit a selective deficit in suppressing task-irrelevant information during visual working memory encoding, but only in the early stages of visual processing. Thus, the employment of suppressive mechanisms are not abolished with aging but rather delayed in time, revealing a decline in processing speed that is selective for the inhibition of irrelevant information. EEG spectral analysis of signals from frontal regions suggests that this results from excessive attention to distracting information early in the time course of viewing irrelevant stimuli. Subdividing the older population based on working memory performance revealed that impaired suppression of distracting information early in the visual processing stream is associated with poorer memory of task-relevant information. Thus, these data reconcile two cognitive aging hypotheses by revealing that an interaction of deficits in inhibition and processing speed contributes to agerelated cognitive impairment.