Thomas F. Münte

Electrophysiological evidence for different inhibitory mechanisms when stopping or changing a planned response

Authors:

  • Ulrike M. Krämer

  • Robert T. Knight

  • Thomas F. Münte

Date: 2011

DOI: 10.1162/jocn.2010.21573

PubMed: 20849230

View PDF

Abstract:

People are able to adapt their behavior to changing environmental contingencies by rapidly inhibiting or modifying their actions. Response inhibition is often studied in the stop-signal paradigm that requires the suppression of an already prepared motor response. Less is known about situations calling for a change of motor plans such that the prepared response has to be withheld but another has to be executed instead. In the present study, we investigated whether electrophysiological data can provide evidence for distinct inhibitory mechanisms when stopping or changing a response. Participants were instructed to perform in a choice RT task with two classes of embedded critical trials: Stop signals called for the inhibition of any response, whereas change signals required participants to inhibit the prepared response and execute another one instead. Under both conditions, we observed differences in go-stimulus processing, suggesting a faster response preparation in failed compared with successful inhibitions. In contrast to stop-signal trials, changing a response did not elicit the inhibition-related frontal N2 and did not modulate the parietal mu power decrease. The results suggest that compared with changing a response, additional frontal and parietal regions are engaged when having to inhibit a response.

Electrophysiological evidence for different inhibitory mechanisms when stopping or changing a planned response

Authors:

  • Mark A. Kramer

  • Robert T. Knight

  • Thomas F. Münte

Date: 2009

PubMed: 20849230

View PDF

Abstract:

People are able to adapt their behavior to changing environmental contingencies by rapidly inhibiting or modifying their actions. Response inhibition is often studied in the stop-signal paradigm that requires the suppression of an already prepared motor response. Less is known about situations calling for a change of motor plans such that the prepared response has to be withheld but another has to be executed instead. In the present study, we investigated whether electrophysiological data can provide evidence for distinct inhibitory mechanisms when stopping or changing a response. Participants were instructed to perform in a choice RT task with two classes of embedded critical trials: Stop signals called for the inhibition of any response, whereas change signals required participants to inhibit the prepared response and execute another one instead. Under both conditions, we observed differences in go-stimulus processing, suggesting a faster response preparation in failed compared with successful inhibitions. In contrast to stop-signal trials, changing a response did not elicit the inhibition-related frontal N2 and did not modulate the parietal mu power decrease. The results suggest that compared with changing a response, additional frontal and parietal regions are engaged when having to inhibit a response.