Orrin Devinsky

Imagined speech can be decoded from low- and cross-frequency intracranial EEG features

Abstract:

Reconstructing intended speech from neural activity using brain-computer interfaces holds great promises for people with severe speech production deficits. While decoding overt speech has progressed, decoding imagined speech has met limited success, mainly because the associated neural signals are weak and variable compared to overt speech, hence difficult to decode by learning algorithms. We obtained three electrocorticography datasets from 13 patients, with electrodes implanted for epilepsy evaluation, who performed overt and imagined speech production tasks. Based on recent theories of speech neural processing, we extracted consistent and specific neural features usable for future brain computer interfaces, and assessed their performance to discriminate speech items in articulatory, phonetic, and vocalic representation spaces. While high-frequency activity provided the best signal for overt speech, both low- and higher-frequency power and local cross-frequency contributed to imagined speech decoding, in particular in phonetic and vocalic, i.e. perceptual, spaces. These findings show that low-frequency power and cross-frequency dynamics contain key information for imagined speech decoding.

Authors:

  • Timothée Proix

  • Jaime Delgado Saa

  • Andy Christen

  • Stephanie Martin

  • Brian N. Pasley

  • Robert T. Knight

  • Xing Tian

  • David Poeppel

  • Werner K. Doyle

  • Orrin Devinsky

  • Luc H. Arnal

  • Pierre Mégevand

  • Anne-Lise Giraud

Date: 2021

DOI: https://doi.org/10.1038/s41467-021-27725-3

View PDF

iEEG-BIDS, extending the Brain Imaging Data Structure specification to human intracranial electrophysiology

Description:

The Brain Imaging Data Structure (BIDS) is a community-driven specification for organizing neuroscience data and metadata with the aim to make datasets more transparent, reusable, and reproducible. Intracranial electroencephalography (iEEG) data offer a unique combination of high spatial and temporal resolution measurements of the living human brain. To improve internal (re) use and external sharing of these unique data, we present a specification for storing and sharing iEEG data: iEEG-BIDS.

Authors:

  • Christopher Holdgraf

  • Stefan Appelhoff

  • Stephan Bickel

  • Kristofer Bouchard

  • Sasha D’Ambrosio

  • Olivier David

  • Orrin Devinsky

  • Benjamin Dichter

  • Adeen Flinker

  • Brett L. Foster

  • Krzysztof J. Gorgolewski

  • Iris Groen

  • David Groppe

  • Aysegul Gunduz

  • Liberty Hamilton

  • Christopher J. Honey

  • Mainak Jas

  • Robert T. Knight

  • Jean-Philippe Lachaux

  • Jonathan C. Lau

  • Christopher Lee-Messer

  • Brian N. Lundstrom

  • Kai J. Miller

  • Jeffrey G. Ojemann

  • Robert Oostenveld

  • Natalia Petridou

  • Gio Piantoni

  • Andrea Pigorini

  • Nader Pouratian

  • Nick F. Ramsey

  • Arjen Stolk

  • Nicole C. Swann

  • François Tadel

  • Bradley Voytek

  • Brian A . Wandell

  • Jonathan Winawer

  • Kirstie Whitaker

  • Lyuba Zehl

  • Dora Hermes

Date: 2019

DOI: https://doi.org/10.1038/s41597-019-0105-7

View PDF