Mitchel S. Berger

Categorical speech representation in the human superior temporal gyrus

Authors:

  • Edward F. Chang

  • Jochem W. Rieger

  • Keith Johnson

  • Mitchel S. Berger

  • Nicholas M. Barbaro

  • Robert T. Knight

Date: 2010

DOI: 10.1038/nn.264

PubMed: 20890293

View PDF

Abstract:

Speech perception requires the rapid and effortless extraction of meaningful phonetic information from a highly variable acoustic signal. A powerful example of this phenomenon is categorical speech perception, in which a continuum of acoustically varying sounds is transformed into perceptually distinct phoneme categories. We found that the neural representation of speech sounds is categorically organized in the human posterior superior temporal gyrus. Using intracranial high-density cortical surface arrays, we found that listening to synthesized speech stimuli varying in small and acoustically equal steps evoked distinct and invariant cortical population response patterns that were organized by their sensitivities to critical acoustic features. Phonetic category boundaries were similar between neurometric and psychometric functions. Although speech-sound responses were distributed, spatially discrete cortical loci were found to underlie specific phonetic discrimination. Our results provide direct evidence for acoustic-to–higher order phonetic level encoding of speech sounds in human language receptive cortex.

Categorical speech representation in human superior temporal gyrus

Authors:

  • Edward F. Chang

  • Jochem W. Rieger

  • Keith Johnson

  • Mitchel S. Berger

  • Nicholas M. Barbaro

  • Robert T. Knight

Date: 2010

PubMed: 20890293

View PDF

Abstract:

Speech perception requires the rapid and effortless extraction of meaningful phonetic information from a highly variable acoustic signal. A powerful example of this phenomenon is categorical speech perception, in which a continuum of acoustically varying sounds is transformed into perceptually distinct phoneme categories. We found that the neural representation of speech sounds is categorically organized in the human posterior superior temporal gyrus. Using intracranial high-density cortical surface arrays, we found that listening to synthesized speech stimuli varying in small and acoustically equal steps evoked distinct and invariant cortical population response patterns that were organized by their sensitivities to critical acoustic features. Phonetic category boundaries were similar between neurometric and psychometric functions. Although speech-sound responses were distributed, spatially discrete cortical loci were found to underlie specific phonetic discrimination. Our results provide direct evidence for acoustic-to–higher order phonetic level encoding of speech sounds in human language receptive cortex.

Categorical speech representation in human superior temporal gyrus

Authors:

  • Edward F. Chang

  • Jochem W. Rieger

  • Keith Johnson

  • Mitchel S. Berger

  • Nicholas M. Barbaro

  • Robert T. Knight

Date: 2010

PubMed: 20890293

View PDF

Abstract:

Speech perception requires the rapid and effortless extraction of meaningful phonetic information from a highly variable acoustic signal. A powerful example of this phenomenon is categorical speech perception, in which a continuum of acoustically varying sounds is transformed into perceptually distinct phoneme categories. We found that the neural representation of speech sounds is categorically organized in the human posterior superior temporal gyrus. Using intracranial high-density cortical surface arrays, we found that listening to synthesized speech stimuli varying in small and acoustically equal steps evoked distinct and invariant cortical population response patterns that were organized by their sensitivities to critical acoustic features. Phonetic category boundaries were similar between neurometric and psychometric functions. Although speech-sound responses were distributed, spatially discrete cortical loci were found to underlie specific phonetic discrimination. Our results provide direct evidence for acoustic-to–higher order phonetic level encoding of speech sounds in human language receptive cortex.

Sub-centimeter language organization in the human temporal lobe

Authors:

  • Adeen Flinker

  • Edward F. Chang

  • Nicholas M. Barbaro

  • Mitchel S. Berger

  • Robert T. Knight

Date: 2010

DOI: 10.1016/j.bandl.2010.09.009

PubMed: 20961611

View PDF

Abstract:

The human temporal lobe is well known to be critical for language comprehension. Previous physiological research has focused mainly on non-invasive neuroimaging and electrophysiological techniques with each approach requiring averaging across many trials and subjects. The results of these studies have implicated extended anatomical regions in peri-sylvian cortex in speech perception. These non-invasive studies typically report a spatially homogenous functional pattern of activity across several centimeters of cortex. We examined the spatiotemporal dynamics of word processing using electrophysiological signals acquired from high-density electrode arrays (4mm spacing) placed directly on the human temporal lobe. Electrocorticographic (ECoG) activity revealed a rich mosaic of language activity, which was functionally distinct at four mm separation. Cortical sites responding specifically to word and not phoneme stimuli were surrounded by sites that responded to both words and phonemes. Other sub-regions of the temporal lobe responded robustly to self-produced speech and minimally to external stimuli while surrounding sites at 4mm distance exhibited an inverse pattern of activation. These data provide evidence for temporal lobe specificity to words as well as self-produced speech. Furthermore, the results provide evidence that cortical processing in the temporal lobe is not spatially homogenous over centimeters of cortex. Rather, language processing is supported by independent and spatially distinct functional sub-regions of cortex at a resolution of at least 4mm.

Comparison of time-frequency responses and the event related potential to auditory speech stimuli in the human cortex

Authors:

  • Erik Edwards

  • Maryam Soltani

  • Won Kim

  • Sarang S. Dalal

  • Srikantan S. Nagarajan

  • Mitchel S. Berger

  • Robert T. Knight

Date: 2009

DOI: 10.1152/jn.90954.2008

PubMed: 19439673

View PDF

Abstract:

Comparison of time–frequency responses and the event-related potential to auditory speech stimuli in human cortex. J Neurophysiol 102: 377–386, 2009. First published May 13, 2009; doi:10.1152/jn.90954.2008. We recorded the electrocorticogram directly from the exposed cortical surface of awake neurosurgical patients during the presentation of auditory syllable stimuli. All patients were unanesthetized as part of a language-mapping procedure for subsequent left-hemisphere tumor resection. Time–frequency analyses showed significant high-gamma (high : 70 –160 Hz) responses from the left superior temporal gyrus, but no reliable response from the left inferior frontal gyrus. Alpha suppression (: 7–14 Hz) and event-related potential responses exhibited a more widespread topography. Across electrodes, the  suppression from 200 to 450 ms correlated with the preceding (50 –200 ms) high increase. The results are discussed in terms of the different physiological origins of these electrocortical signals.

Five-dimensional neuroimaging: localization of the time-frequency dynamics of cortical activity

Authors:

  • Sarang S. Dalal

  • Adrian G. Guggisberg

  • Erik Edwards

  • Kensuke Sekihara

  • Anne M. Findlay

  • Ryan T. Canolty

  • Mitchel S. Berger

  • Robert T. Knight

  • Nicholas M. Barbaro

  • Heidi E. Kirsch

  • Srikantan S. Nagarajan

Date: 2008

DOI: 10.1016/j.neuroimage.2008.01.023

PubMed: 18356081

View PDF

Abstract:

The spatiotemporal dynamics of cortical oscillations across human brain regions remain poorly understood because of a lack of adequately validated methods for reconstructing such activity from noninvasive electrophysiological data. In this paper, we present a novel adaptive spatial filtering algorithm optimized for robust source time– frequency reconstruction from magnetoencephalography (MEG) and electroencephalography (EEG) data. The efficacy of the method is demonstrated with simulated sources and is also applied to real MEG data from a self-paced finger movement task. The algorithm reliably reveals modulations both in the beta band (12–30 Hz) and high gamma band (65–90 Hz) in sensorimotor cortex. The performance is validated by both across-subjects statistical comparisons and by intracranial electrocorticography (ECoG) data from two epilepsy patients. Inter- estingly, we also reliably observed high frequency activity (30–300 Hz) in the cerebellum, although with variable locations and frequencies across subjects. The proposed algorithm is highly parallelizable and runs efficiently on modern high-performance computing clusters. This method enables the ultimate promise of MEG and EEG for five- dimensional imaging of space, time, and frequency activity in the brain and renders it applicable for widespread studies of human cortical dynamics during cognition.

High Gamma Power is Phase-Locked to Theta Oscillations in Human Neocortex

Authors:

  • Ryan T. Canolty

  • Erik Edwards

  • Sarang S. Dalal

  • Maryam Soltani

  • Srikantan S. Nagarajan

  • Heidi E. Kirsch

  • Mitchel S. Berger

  • Nicholas M. Barbaro

  • Robert T. Knight

Date: 2006

PubMed: 16973878

View PDF

Abstract:

We observed robust coupling between the high- and low-frequency bands of ongoing electrical activity in the human brain. In particular, the phase of the low-frequency theta (4 to 8 hertz) rhythm modulates power in the high gamma (80 to 150 hertz) band of the electrocorticogram, with stronger modulation occurring at higher theta amplitudes. Furthermore, different behavioral tasks evoke distinct patterns of theta/high gamma coupling across the cortex. The results indicate that transient coupling between low- and high-frequency brain rhythms coordinates activity in distributed cortical areas, providing a mechanism for effective communication during cognitive processing in humans.

High gamma activity in response to deviant auditory stimuli recorded directly from human cortex

Authors:

  • Erik Edwards

  • Maryam Soltani

  • Leon Y. Deouell

  • Mitchel S. Berger

  • Robert T. Knight

Date: 2005

PubMed: 16093343

View PDF

Abstract:

We recorded electrophysiological responses from the left frontal and temporal cortex of awake neurosurgical patients to both repetitive background and rare deviant auditory stimuli. Prominent sensory event-related potentials (ERPs) were recorded from auditory association cortex of the temporal lobe and adjacent regions surrounding the posterior Sylvian fissure. Deviant stimuli generated an additional longer latency mismatch response, maximal at more anterior temporal lobe sites. We found low gamma (30-60 Hz) in auditory association cortex, and we also show the existence of high-frequency oscillations above the traditional gamma range (high gamma, 60-250 Hz). Sensory and mismatch potentials were not reliably observed at frontal recording sites. We suggest that the high gamma oscillations are sensory-induced neocortical ripples, similar in physiological origin to the well-studied ripples of the hippocampus.

Synchronization measures of bursting data: Application to the electrocoricogram of an auditory event-related experiment

Authors:

  • Mark A. Kramer

  • Erik Edwards

  • Maryam Soltani

  • Mitchel S. Berger

  • Robert T. Knight

  • Andrew J. Szeri

Date: 2004

PubMed: 15324095

View PDF

Abstract:

Synchronization measures have become an important tool for exploring the relationships between time series. We review three recently proposed nonlinear synchronization measures and expand their definitions in a straightforward way to apply to an ensemble of measurements. We also develop a synchronization measure in which nearest neighbors are determined across the ensemble. We compare these four nonlinear synchronization measures and show that our measure succeeds in physically motivated examples where the other methods fail. We apply the synchronization measure to human electrocorticogram data collected during an auditory event-related potential experiment. The results suggest a crude model of cortical connectivity.