Abstract:
Learning novel visuomotor tasks requires precise processing and transformation of incoming sensory information to produce accurate motor responses. The present study characterized neural activity associated with sensorimotor processes during novel visuomotor learning. We hypothesized that the acquisition of a visuomotor skill would be accompanied by experience-dependent modulation of sensorimotor cortical activity. Subjects controlled a cursor on a computer screen with a joystick. With the goal to move the cursor to a cued target after a brief delay, the relationship between joystick and cursor movement was manipulated such that joystick movement controlled cursor velocity, not displacement (rate task). Individual trials in this task were further divided into early (rate1) and late (rate2) blocks. Event-related potentials (ERPs) were averaged to target presentation, the cue for movement, and movement onset. Subjects were more accurate after practice in late rate2 compared to early rate1 blocks. ERPs associated with movement onset were larger in amplitude and occurred earlier over centroparietal sites following practice. In contrast, ERPs to the cue to move were enhanced frontocentrally initially and diminished with practice. The results suggest that practice on a novel visuomotor task is associated with changes in frontoparietal networks involved in motor preparation and sensorimotor integration. Specifically, practice-related enhancement of movement-related ERPs supports experience-dependent alterations in the network subserving motor preparation.