Edward Chang

Left hemisphere dominance for bilateral kinematic encoding in the human brain

Abstract:

Neurophysiological studies in humans and nonhuman primates have revealed movement representations in both the contralateral and ipsilateral hemispheres. Inspired by clinical observations, we ask if this bilateral representation differs for the left and right hemispheres. Electrocorticography was recorded in human participants during an instructed-delay reaching task, with movements produced with either the contralateral or ipsilateral arm. Using a cross-validated kinematic encoding model, we found stronger bilateral encoding in the left hemisphere, an effect that was present during preparation and was amplified during execution. Consistent with this asymmetry, we also observed better across-arm generalization in the left hemisphere, indicating similar neural representations for right and left arm movements. Notably, these left hemisphere electrodes were centered over premotor and parietal regions. The more extensive bilateral encoding in the left hemisphere adds a new perspective to the pervasive neuropsychological finding that the left hemisphere plays a dominant role in praxis.

authors:

  • Christina M Merrick

  • Tanner C Dixon

  • Assaf Breska

  • Jack Lin

  • Edward F Chang

  • David King-Stephens

  • Kenneth D Laxer

  • Peter B Weber

  • Jose Carmena

  • Robert Thomas Knight

  • Richard B Ivry

Date: 2022

DOI: : https://doi.org/10.7554/eLife.69977

View PDF

Encoding of multiple reward-related computations in transient and sustained high-frequency activity in human OFC

Abstract:

Human orbitofrontal cortex (OFC) has long been implicated in value-based decision making. In recent years, convergent evidence from human and model organisms has further elucidated its role in representing reward-related computations underlying decision making. However, a detailed description of these processes remains elusive due in part to (1) limitations in our ability to observe human OFC neural dynamics at the timescale of decision processes and (2) methodological and interspecies differences that make it challenging to connect human and animal findings or to resolve discrepancies when they arise. Here, we sought to address these challenges by conducting multi-electrode electrocorticography(ECoG) recordings in neurosurgical patients during economic decision making to elucidate the electrophysiological signature, sub-second temporal profile, and anatomical distribution of reward-related computations within human OFC. We found that high-frequency activity (HFA) (70–200 Hz) reflected multiple valuation components grouped in two classes of valuation signals that were dissociable in temporal profile and information content: (1) fast, transient responses reflecting signals associated with choice and outcome processing, including anticipated risk and outcome regret, and (2) sustained responses explicitly encoding what happened in the immediately preceding trial. Anatomically, these responses were widely distributed in partially overlapping networks, including regions in the central OFC (Brodmann areas 11 and 13), which have been consistently implicated in reward processing in animal single-unit studies. Together, these results integrate insights drawn from human and animal studies and provide evidence for a role of human OFC in representing multiple reward computations.



Authors:

  • Ignacio Saez

  • Jack Lin

  • Arjen Stolk

  • Edward Chang

  • Josef Parvizi

  • Gerwin Schalk

  • Robert T. Knight

  • Ming Hsu

Date: 2018

DOI: 10.1016/j.cub.2018.07.045

View PDF