Vitória Piai

Advances in human intracranial electroencephalography research, guidelines and good practices

Abstract:

Since the second half of the twentieth century, intracranial electroencephalography (iEEG), including both electrocorticography (ECoG) and stereo-electroencephalography (sEEG), has provided an intimate view into the human brain. At the interface between fundamental research and the clinic, iEEG provides both high temporal resolution and high spatial specificity but comes with constraints, such as the individual's tailored sparsity of electrode sampling. Over the years, researchers in neuroscience developed their practices to make the most of the iEEG approach. Here we offer a critical review of iEEG research practices in a didactic framework for newcomers, as well addressing issues encountered by proficient researchers. The scope is threefold: (i) review common practices in iEEG research, (ii) suggest potential guidelines for working with iEEG data and answer frequently asked questions based on the most widespread practices, and (iii) based on current neurophysiological knowledge and methodologies, pave the way to good practice standards in iEEG research. The organization of this paper follows the steps of iEEG data processing. The first section contextualizes iEEG data collection. The second section focuses on localization of intracranial electrodes. The third section highlights the main pre-processing steps. The fourth section presents iEEG signal analysis methods. The fifth section discusses statistical approaches. The sixth section draws some unique perspectives on iEEG research. Finally, to ensure a consistent nomenclature throughout the manuscript and to align with other guidelines, e.g., Brain Imaging Data Structure (BIDS) and the OHBM Committee on Best Practices in Data Analysis and Sharing (COBIDAS), we provide a glossary to disambiguate terms related to iEEG research.

Authors:

  • Manuel R. Mercier

  • Anne-Sophie Dubarry

  • François Tadel

  • Pietro Avanzini

  • Nikolai Axmacher

  • Dillan Cellier

  • Maria Del Vecchio

  • Liberty S. Hamilton

  • Dora Hermes

  • Michael J. Kahana

  • Robert T. Knight

  • Anais Llorens

  • Pierre Megevand

  • Lucia Melloni

  • Kai J. Miller

  • Vitória Piai

  • Aina Puce

  • Nick F. Ramsey

  • Caspar M. Schwiedrzik

  • Sydney E. Smith

  • Arjen Stolk

  • Nicole C. Swann

  • Mariska J Vansteensel

  • Bradley Voytek

  • Liang Wang

  • Jean-Philippe Lachaux

  • Robert Oostenveld

Date: 2022

DOI: https://doi.org/10.1016/j.neuroimage.2022.119438

View PDF

Language Neuroplasticity in Brain Tumor Patients Revealed by Magnetoencephalography

Abstract:

Little is known about language impairment in brain tumor patients, especially in the presurgical phase. Impairment in this population may be missed because standardized tests fail to capture mild deficits. Additionally, neuroplasticity may also contribute to minimizing language impairments. We examined 14 presurgical patients with brain tumors in the language-dominant hemisphere using magnetoencephalography (MEG) while they performed a demanding picture–word interference task, that is, participants name pictures while ignoring distractor words. Brain tumor patients had behavioral picture-naming effects typically observed in healthy controls. The MEG responses also showed the expected pattern in its timing and amplitude modulation typical of controls, but with an altered spatial distribution of right hemisphere sources, in contrast to the classic left hemisphere source found in healthy individuals. This finding supports tumor-induced neural reorganization of language before surgery. Crucially, the use of electrophysiology allowed us to show the “same” neuronal response in terms of its timing and amplitude modulation in the right hemisphere, supporting the hypothesis that the processes performed by the right hemisphere following reorganization are similar in nature to those (previously) performed by the left hemisphere. We also identified one participant with a fast-growing tumor affecting large parts of critical language areas and underlying ventral and dorsal white matter tracts who showed a deviant pattern in behavior and in the MEG event-related responses. In conclusion, our results attest to the validity of using a demanding picture-naming task in presurgical patients and provide evidence for neuroplasticity, with the right hemisphere performing similar computations as the left hemisphere typically performs.

Authors:

  • Vitória Piai

  • Elke De Witte

  • Joanna Sierpowska

  • Xiaochen Zheng

  • Leighton B Hinkley

  • Danielle Mizuiri

  • Robert T Knight

  • Mitchel S Berger

  • Srikantan S Nagarajan


Date: 2020

DOI: https://doi.org/10.1162/jocn_a_01561

View PDF


Roles of ventral versus dorsal pathways in language production: An awake language mapping study

Abstract:

Human language is organized along two main processing streams connecting posterior temporal cortex and inferior frontal cortex in the left hemisphere, travelling dorsal and ventral to the Sylvian fissure. Some views propose a dorsal motor versus ventral semantic division. Others propose division by combinatorial mechanism, with the dorsal stream responsible for combining elements into a sequence and the ventral stream for forming semantic dependencies independent of sequential order. We acquired data from direct cortical stimulation in the left hemisphere in 17 neurosurgical patients and subcortical resection in a subset of 10 patients as part of awake language mapping. Two language tasks were employed: a sentence generation (SG) task tested the ability to form sequential and semantic dependencies, and a picture-word interference (PWI) task manipulated semantic interference. Results show increased error rates in the SG versus PWI task during subcortical testing in the dorsal stream territory, and high error rates in both tasks in the ventral stream territory. Connectivity maps derived from diffusion imaging and seeded in the tumor sites show that patients with more errors in the SG than in the PWI task had tumor locations associated with a dorsal stream connectivity pattern. Patients with the opposite pattern of results had tumor locations associated with a more ventral stream connectivity pattern. These findings provide initial evidence using fiber tract disruption with electrical stimulation that the dorsal pathways are critical for organizing words in a sequence necessary for sentence generation, and the ventral pathways are critical for processing semantic dependencies.



Authors:

  • Stephanie K Ries

  • Vitória Piai

  • David Perry

  • Sandon M Griffin

  • Kesshi Jordan

  • Roland Henry

  • Robert T. Knight

  • Mitchel S Berger

Date: 2019

DOI: https://doi.org/10.1016/j.bandl.2019.01.001

View PDF


Intracranial electrophysiology in language research

ABSTRACT

Intracranial electrophysiological recording in humans has been a long standing technique in neurosurgical treatment for epilepsy and have served as an important window in to how the human brain processes language. This chapter is aimed to introduce the reader to the technique, how it historically contributed to language mapping, its advantages and disadvantages as a research tool, and analysis techniques that have provided novel findings and approaches in the area of language processing.


AUTHORS

  • Adeen Flinker

  • Vitória Piai

  • Robert T. Knight

Date: 2018

View PDF