Michelle Paff

Awake ripples enhance emotional memory encoding in the human brain

Abstract:

Enhanced memory for emotional experiences is hypothesized to depend on amygdala-hippocampal interactions during memory consolidation. Here we show using intracranial recordings from the human amygdala and the hippocampus during an emotional memory encoding and discrimination task increased awake ripples after encoding of emotional, compared to neutrally-valenced stimuli. Further, post-encoding ripple-locked stimulus similarity is predictive of later memory discrimination. Ripple-locked stimulus similarity appears earlier in the amygdala than in hippocampus and mutual information analysis confirms amygdala influence on hippocampal activity. Finally, the joint ripple-locked stimulus similarity in the amygdala and hippocampus is predictive of correct memory discrimination. These findings provide electrophysiological evidence that post-encoding ripples enhance memory for emotional events.

Authors:

  • Haoxin Zhang

  • Ivan Skelin

  • Shiting Ma

  • Michelle Paff

  • Lilit Mnatsakanyan

  • Michael A. Yassa

  • Robert T. Knight

  • Jack J. Lin

Date: 2024

DOI: https://doi.org/10.1038/s41467-023-44295-8

View PDF

Consciousness is supported by near-critical slow cortical electrodynamics

Abstract:

Mounting evidence suggests that during conscious states, the electrodynamics of the cortex are poised near a critical point or phase transition and that this near-critical behavior supports the vast flow of information through cortical networks during conscious states. Here, we empirically identify a mathematically specific critical point near which waking cortical oscillatory dynamics operate, which is known as the edge-of-chaos critical point, or the boundary between stability and chaos. We do so by applying the recently developed modified 0-1 chaos test to electrocorticography (ECoG) and magnetoencephalography (MEG) recordings from the cortices of humans and macaques across normal waking, generalized seizure, anesthesia, and psychedelic states. Our evidence suggests that cortical information processing is disrupted during unconscious states because of a transition of low-frequency cortical electric oscillations away from this critical point; conversely, we show that psychedelics may increase the information richness of cortical activity by tuning low-frequency cortical oscillations closer to this critical point. Finally, we analyze clinical electroencephalography (EEG) recordings from patients with disorders of consciousness (DOC) and show that assessing the proximity of slow cortical oscillatory electrodynamics to the edge-of-chaos critical point may be useful as an index of consciousness in the clinical setting.

Authors:

  • Daniel Toker

  • Ioannis Pappas

  • Janna D Lendner

  • Joel Frohlich

  • Diego M Mateos

  • Suresh Muthukumaraswamy

  • Robin Carhart-Harris

  • Michelle Paff

  • Paul M Vespa

  • Martin M Monti

  • Friedrich T Sommer

  • Robert T Knight

  • Mark D’Esposito

Date: 2022

DOI: https://doi.org/10.1073/pnas.2024455119

View PDF

Consciousness is supported by near-critical slow cortical electrodynamics

Abstract:

Mounting evidence suggests that during conscious states, the electrodynamics of the cortex are poised near a critical point or phase transition and that this near-critical behavior supports the vast flow of information through cortical networks during conscious states. Here, we empirically identify a mathematically specific critical point near which waking cortical oscillatory dynamics operate, which is known as the edge-of-chaos critical point, or the boundary between stability and chaos. We do so by applying the recently developed modified 0-1 chaos test to electrocorticography (ECoG) and magnetoencephalography (MEG) recordings from the cortices of humans and macaques across normal waking, generalized seizure, anesthesia, and psychedelic states. Our evidence suggests that cortical information processing is disrupted during unconscious states because of a transition of low-frequency cortical electric oscillations away from this critical point; conversely, we show that psychedelics may increase the information richness of cortical activity by tuning low-frequency cortical oscillations closer to this critical point. Finally, we analyze clinical electroencephalography (EEG) recordings from patients with disorders of consciousness (DOC) and show that assessing the proximity of slow cortical oscillatory electrodynamics to the edge-of-chaos critical point may be useful as an index of consciousness in the clinical setting.

Authors:

  • Daniel Toker

  • Ioannis Pappas

  • Janna D. Lendner

  • Joel Frohlich

  • Diego M. Mateos

  • Suresh Muthukumaraswamy

  • Robin Carhart-Harris

  • Michelle Paff

  • Paul M. Vespa

  • Martin M. Monti

  • Friedrich T. Sommer

  • Robert T. Knight

  • Mark D’Esposito

Date: 2022

DOI: https://doi.org/10.1073/pnas.2024455119

View PDF

Bidirectional prefrontal-hippocampal dynamics organize information transfer during sleep in humans

Abstract:

How are memories transferred from short-term to long-term storage? Systems-level memory consolidation is thought to be dependent on the coordinated interplay of cortical slow waves, thalamo-cortical sleep spindles and hippocampal ripple oscillations. However, it is currently unclear how the selective interaction of these cardinal sleep oscillations is organized to support information reactivation and transfer. Here, using human intracranial recordings, we demonstrate that the prefrontal cortex plays a key role in organizing the ripple-mediated information transfer during non-rapid eye movement (NREM) sleep. We reveal a temporally precise form of coupling between prefrontal slow-wave and spindle oscillations, which actively dictates the hippocampal-neocortical dialogue and information transfer. Our results suggest a model of the human sleeping brain in which rapid bidirectional interactions, triggered by the prefrontal cortex, mediate hippocampal activation to optimally time subsequent information transfer to the neocortex during NREM sleep.

Authors:

  • Randolph F Helfrich

  • Janna D Lendner

  • Bryce A Mander

  • Heriberto Guillen

  • Michelle Paff

  • Lilit Mnatsakanyan

  • Sumeet Vadera

  • Matthew P Walker

  • Jack J Lin

  • Robert T Knight

Date: 2019

DOI: https://doi.org/10.1038/s41467-019-11444-x

View PDF