Déborah Marciano

Dynamic expectations: Behavioral and electrophysiological evidence of sub-second updates in reward predictions

Abstract:

Expectations are often dynamic: sports fans know that expectations are rapidly updated as games unfold. Yet expectations have traditionally been studied as static. Here we present behavioral and electrophysiological evidence of sub-second changes in expectations using slot machines as a case study. In Study 1, we demonstrate that EEG signal before the slot machine stops varies based on proximity to winning. Study 2 introduces a behavioral paradigm to measure dynamic expectations via betting, and shows that expectation trajectories vary as a function of winning proximity. Notably, these expectation trajectories parallel Study 1’s EEG activity. Studies 3 (EEG) and 4 (behavioral) replicate these findings in the loss domain. These four studies provide compelling evidence that dynamic sub-second updates in expectations can be behaviorally and electrophysiologically measured. Our research opens promising avenues for understanding the dynamic nature of reward expectations and their impact on cognitive processes.

Authors:

  • Déborah Marciano

  • Ludovic Bellier

  • Ida Mayer

  • Michael Ruvalcaba

  • Sangil Lee

  • Ming Hsu

  • Robert T. Knight

Date: 2023

DOI: https://doi.org/10.1038/s42003-023-05199-x

View PDF

Music can be reconstructed from human auditory cortex activity using nonlinear decoding models

Abstract:

Music is core to human experience, yet the precise neural dynamics underlying music perception remain unknown. We analyzed a unique intracranial electroencephalography (iEEG) dataset of 29 patients who listened to a Pink Floyd song and applied a stimulus reconstruction approach previously used in the speech domain. We successfully reconstructed a recognizable song from direct neural recordings and quantified the impact of different factors on decoding accuracy. Combining encoding and decoding analyses, we found a right-hemisphere dominance for music perception with a primary role of the superior temporal gyrus (STG), evidenced a new STG subregion tuned to musical rhythm, and defined an anterior–posterior STG organization exhibiting sustained and onset responses to musical elements. Our findings show the feasibility of applying predictive modeling on short datasets acquired in single patients, paving the way for adding musical elements to brain–computer interface (BCI) applications.

Authors:

  • Ludovic Bellier

  • Anaïs Llorens

  • Déborah Marciano

  • Aysegul Gunduz

  • Gwerwin Schalk

  • Peter Brunner

  • Robert T. Knight

Date: 2023

DOI: https://doi.org/10.1371/journal.pbio.3002176

View PDF